Skip to main content
Log in

Diamond–Silicon Carbide Composite as a Promising Material for Microelectronics and High-Power Electronics

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the basic characteristics of a diamond–silicon carbide composite “Skeleton,” which is a new promising material with a unique combination of electrophysical properties. The results of the studies of the absorbing characteristics of this composite in the millimeter-wavelength range are given. A possible use of the “Skeleton” composite in new microwave devices and appliances is considered to the benefit of modern science and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Calame and D.K.Abe, Proc. IEEE, 87, No. 5, 840–864 (1999). https://doi.org/https://doi.org/10.1109/5.757257

    Article  Google Scholar 

  2. M. T. Sebastian, H. Jantunen, and R.Ubic, eds., Microwave Materials and Applications, Wiley, Hoboken (2017).

    Google Scholar 

  3. R. G. Carter, Microwave and RF Vacuum Electronic Power Sources, Cambridge Univ. Press, Cambridge (2018). https://doi.org/10.1017/9780511979231

  4. J. Benford, J.A. Swegle, and E. Schamiloglu, High Power Microwaves, CRC Press, Boca Raton (2015).

    Book  Google Scholar 

  5. M. Ding, Y. Liu, X. Lu, and W.Tang, Materials, 12, No. 22, 3700 (2019). https://doi.org/https://doi.org/10.3390/ma12223700

    Article  ADS  Google Scholar 

  6. M. Ding, Y. Liu, X. Lu, et al., Appl. Phys. Lett., 114, No. 16, 162901 (2019). https://doi.org/10.1063/1.5083079

  7. V. N. Il’in, Yu. A.Potapov, V. A. Smirnov, et al., in: Proc. Russian Conf. “Electronics and Microelectronics,” June 1–4, 2015, St. Petersburg, Russia, pp. 47–50.

  8. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).

    Book  Google Scholar 

  9. A.E.Khramov, A. G. Balanov, V. D.Eremka, V.E. Zapevalov, and A. A.Koronovskii, eds., Generation and Amplification of the Teraherts-Range Signals [in Russian], Saratov State Tech. Univ., Saratov (2016).

    Google Scholar 

  10. S. K. Gordeev, Vopr. Materialoved., No. 3, 31–40 (2001).

  11. S.K.Gordeev, S.G. Zhukov, L.V.Danchukova, et al., “A method for manufacturing the diamond-silicon carbide–silicon composite material and a composite material produced by this method” [in Russian], Eurasian Patent No. 003437 (2004).

  12. S. K. Gordeev, S.B.Korchagina, D.Yu. Latyshev, et al., Tekh. Tekhnol. Probl. Serv., 1, No. 19, 36–41 (2012).

    Google Scholar 

  13. S. K. Gordeev, Yu.A. Ezhov, T. D. Karimbaev, et al., Composit. Nanostruct., 7, No. 2, 2–12 (2015).

    Google Scholar 

  14. O.P. Shaboldo, S. K. Gordeev, V.B.Vikhman, et al., Materials and Technologies of New Generation for Perspective Products of Aviation and Space Equipment, Proc. the Vth Russian Science and Technology Conf., July 19, 2021, Moscow, Russia, pp. 8–22.

  15. S. K. Gordeev, S.B.Korchagina, V.E. Zapevalov, et al., in: Microwave Electronics and Microelectronics, Vol. 1 [in Russian], 30–34 (2021).

  16. S. K. Gordeev, S.B.Korchagina, V.E. Zapevalov, et al., in: Microwave Engineering and Telecommunication Technologies [in Russian], No. 3, 244–245 (2021).

  17. V.V.Parshin, E.A. Serov, G. M. Bubnov, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 554–560 (2014). https://doi.org/https://doi.org/10.1007/s11141-014-9458-0

    Article  ADS  Google Scholar 

  18. V. V.Parshin, M.Yu.Tret’yakov, M. A.Koshelev, et al., Radiophys. Quantum Electron., 52, No. 8, 525–535 (2009). https://doi.org/10.1007/s11141-010-9169-0

  19. M. Born and E.Wolf, Principles of Optics, Pergamon Press, London (1970).

    MATH  Google Scholar 

  20. A.P. Babichev, N.A.Babushkina, A. M. Bratkovsky, et al., Physical Quantities [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  21. H. Shoyama, K. Sakamoto, K. Hayashi, et al., Jpn. J. Appl. Phys., 40, No. 8B, L906–L908 (2001).

    Article  ADS  Google Scholar 

  22. I.P. Bushminsky, Manufacturing of the Microwave Construction Elements [in Russian], Vysshaya Shkola, Moscow (1974).

    Google Scholar 

  23. A. D. Grigor’ev, Electrodynamics and Microwave Technology [in Russian], Lan’, St.Petersburg (2007).

  24. Yu. I.Gal’perin, V.A.Gladyshev, A. I.Kozlov, et al., Electromagnetic Compatibility of the Scientific Space Complex ARKAD-3 [in Russian], Nauka, Moscow (1984).

  25. H. W. Ott, Electromagnetic Compatibility Engineering, Wiley, Hoboken (2009).

    Book  Google Scholar 

  26. T. Williams and K.Amstrong, EMC for Systems and Installations, Newnes, Oxford (2000).

    Google Scholar 

  27. https://millimetron.ru/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zapevalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 475–483, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_475

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, S.K., Korchagina, S.B., Zapevalov, V.E. et al. Diamond–Silicon Carbide Composite as a Promising Material for Microelectronics and High-Power Electronics. Radiophys Quantum El 65, 434–441 (2022). https://doi.org/10.1007/s11141-023-10226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10226-2

Navigation