Skip to main content
Log in

Determination of the Velocity Profiles of Longitudinal and Shear Waves on the Basis of Analysis of Seismic Noise

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider a method for determining the velocity profiles of the longitudinal and shear waves on the basis of analysis of seismic noise. It is a result of improving the widely used method of passive tomography. The proposed method is based on the relation between the mutual spectrum of signals from the spaced receivers, which record two projections of the displacement vector, and the incomplete Green’s function, which corresponds to the response of the surface Rayleigh wave. Using this method, it is possible to determine the frequency dependence of both the phase velocity and ellipticity of the Rayleigh wave. In turn, the latter allows one to reconstruct the profiles of the longitudinal- and shear-wave velocities. In this work, we explain the fundamentals of the method within the framework of a simple model and propose its experimental evaluation. A comparison with the results of an independent measurement using a vibrator is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Bensen, M. H. Ritzwoller, M. P. Barmin, et al., Geophys. J. Int., 169, 1239–1260 (2007). https://doi.org/10.1111/j.1365-246X.2007.03374.x

    Article  ADS  Google Scholar 

  2. C. Nunziata, G. de Nisco, and G. F. Panza, Eng. Geol., 105, No. 3, 161–170 (2009). https://doi.org/10.1016/j.enggeo.2009.01.005

    Article  Google Scholar 

  3. T. Yu. Koroleva, T. B. Yanovskaya, and S. S. Patrusheva, Izv., Phys. Solid Earth, 45, No. 5, 369–380 (2009). https://doi.org/10.1134/S1069351309050012

    Article  ADS  Google Scholar 

  4. N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, Science, 307, No. 5715, 1615–1618 (2005). https://doi.org/10.1126/science.1108339

    Article  ADS  Google Scholar 

  5. R. Snieder and K. Wapenaar, Phys. Today, 63, No. 9, 44–49 (2010). https://doi.org/10.1063/1.3490500

    Article  Google Scholar 

  6. P. Roux, K. G. Sabra, W. A. Kuperman, and A. Roux, J. Acoust. Soc. Am., 117, No. 1, 79–84 (2005). https://doi.org/10.1121/1.1830673

    Article  ADS  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford (1986).

    MATH  Google Scholar 

  8. A. I. Konkov, A. V. Lebedev, and S. A. Manakov, in: W. Freeden, M. Z. Nashed, and T. Sonar, eds., Handbook of Geomathematics, Springer-Verlag, Berlin (2015), pp,2189–2206. https://doi.org/10.1007/978-3-642-27793-1_98-2

  9. V. S. Averbakh, N. N. Gribov, et al., Bull. Russ. Acad. Sci. Phys., 80, No. 10, 1185–1190 (2016). https://doi.org/10.3103/S1062873816100051

    Article  Google Scholar 

  10. E. Lunedei and P. Malischewsky, in: A.Ansal., ed., Perspectives on European Earthquake Engineering and Seismology, Springer, Cham (2015), pp. 371–394. https://doi.org/10.1007/978-3-319-16964-4_15

  11. H. Okada, Explor. Geophys., 37, No. 1, 73–85 (2006). https://doi.org/10.1071/EG06073

    Article  Google Scholar 

  12. B. Artman, I. Podladtchikov, and B. Witten, Geophys. Prosp., 58, No. 5, 861–873 (2010). https://doi.org/10.1111/j.1365-2478.2010.00911.x

    Article  ADS  Google Scholar 

  13. D. Rivet, M. Campillo, F. Sanchez-Sesma, et al., Geophys. J. Int., 203, No. 2, 856–868. https://doi.org/10.1093/gji/ggv339

  14. D. Zigone, Y. Ben-Zion, M. Campillo, and P. Roux, Pure Appl. Geophys., 172, No. 5, 1007–1032 (2015). https://doi.org/10.1007/s00024-014-0872-1

    Article  ADS  Google Scholar 

  15. M. Chmiel, A. Mordret, P. Boue, et al., Geophys. J. Int., 218, No. 3, 1781–1795 (2019). https://doi.org/10.1093/gji/ggz237

    Article  ADS  Google Scholar 

  16. H. Zhang, J. Xia, J. Pang, et al., IOP Conf. Series, Earth and Environmental Science, 660, No. 1, 012036 (2021). https://doi.org/10.1088/1755-1315/660/1/012036

  17. P. Li and G. Lin, Geophys. J. Int., 197, No. 2, 1236–1249 (2014). https://doi.org/10.1093/gji/ggu073

    Article  ADS  Google Scholar 

  18. I. A. Viktorov, Acoustic Surface Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  19. K. Aki and P. G. Richards, Quantitative Seismology, University Science Books, Herndon (2002).

    Google Scholar 

  20. M. M. Haney, T. D. Mikesell, K. van Wijk, and H. Nakahara, Geophys. J. Int., 191, No. 1, 189–206 (2014). https://doi.org/10.1111/j.1365-246X.2012.05597.x

    Article  ADS  Google Scholar 

  21. W. T. Thomson, J. Appl. Phys., 21, No. 2, 89–93 (1950). https://doi.org/10.1063/1.1699629

    Article  ADS  MathSciNet  Google Scholar 

  22. J. E. White, Seismic Wave Propagation, Society of Exploration Geophysicists, Tulsa, OK (2000).

    Book  Google Scholar 

  23. P. Gerstoft, P. M. Shearer, N. Harmon, and J. Zhang, Geophys. Res. Lett., 35, No. 23, L23306 (2008). https://doi.org/10.1029/2008GL036111

    Article  ADS  Google Scholar 

  24. P. Cupillard, L. Stehly, and B. Romanowicz, Geophys. J. Int., 184, No. 3, 1397–1414 (2011). https://doi.org/10.1111/j.1365-246X.2010.04923.x

    Article  ADS  Google Scholar 

  25. S. L. Marple, Jr., Digital Spectral Analysis, Dover, Mineola, NY (2019).

    Google Scholar 

  26. C. B. Park, R. D. Miller, and J. Xia, Geophysics, 64, No. 3, 800–808. https://doi.org/10.1190/1.1444590

  27. L. Stehly, M. Campillo, and N. M. Shapiro, J. Geophys. Res., 111, B10306 (2006). https://doi.org/10.1029/2005JB004237

    Article  ADS  Google Scholar 

  28. L. Hatton, M. H. Worthington, and J. Makin, Seismic Data Processing: Theory and Practice, Blackwell Scientific, Oxford (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Manakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 6, pp. 458–469, June 2021. Russian DOI: 10.52452/00213462_2021_64_06_458

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manakov, S.A., Kon’kov, A.I. Determination of the Velocity Profiles of Longitudinal and Shear Waves on the Basis of Analysis of Seismic Noise. Radiophys Quantum El 64, 412–421 (2021). https://doi.org/10.1007/s11141-022-10143-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10143-w

Navigation