Skip to main content
Log in

Observational Signatures of Dark Matter

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This review includes a description of the origin and evolution of the term “dark matter” as an observationally needed element of the Universe structure. The first context of this term was in fact a “missing mass” which was discovered as a deficit of luminous matter to explain all the observed gravity governing the motion inside galaxies and between them. Generally, the missing mass can be explained by non-radiating baryons. However, later it was understood that dark matter plays a key role in cosmological models of the Universe as a whole, and it must be strictly non-baryonic in cosmology. The main role of dark matter is domination in gravitation, resulting in the large-scale structure development. Based on the role of dark matter in the evolution of the Universe, the astrophysicists–theorists have been able to formulate a list of its properties: it must be particles (bodies), without electromagnetic charge, dynamically cold (non-relativistic), and without self-interaction. However, specific particles that could make up dark matter are not found yet in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zwicky, Helvetica Phys. Acta, 6, 110–127 (1933).

    ADS  Google Scholar 

  2. F. Zwicky, Astrophys. J., 86, No. 3, 217–246 (1937). https://doi.org/10.1086/143864

    Article  ADS  Google Scholar 

  3. A. Bosma, Astron. J., 86, No. 12, 1825–1846 (1981). https://doi.org/10.1086/113063

    Article  ADS  Google Scholar 

  4. A. Bosma and P. C.van der Kruit, Astron. Astrophys., 79, 281–266 (1979).

  5. J. Einasto, A. Kaasik, and E. Saar, Nature, 250, 309–310 (1974). https://doi.org/10.1038/250309a0

    Article  ADS  Google Scholar 

  6. D. Pfenniger, F. Combes, and L. Martinet, Astron. Astrophys., 285, 79–93 (1994).

    ADS  Google Scholar 

  7. D. Pfenniger and F. Combes, Astron. Astrophys., 285, 94–118 (1994).

    ADS  Google Scholar 

  8. D. Ryu, K.A.Olive, and J. Silk, Astrophys. J., 353, 81–89 (1990). https://doi.org/10.1086/168591

    Article  ADS  Google Scholar 

  9. S. D. M. White and M. J. Rees, Mon. Not. Roy. Astron. Soc., 183, 341–358 (1978). https://doi.org/10.1093/mnras/183.3.341

    Article  ADS  Google Scholar 

  10. https://images.nasa.gov/details-PIA04252

  11. M. L. Wilson and J. Silk, Astrophys. J., 243, 14–25 (1981). https://doi.org/10.1086/158561

    Article  ADS  Google Scholar 

  12. P.E. Boynton and R. B. Partridge, Astrophys. J., 181, 243–253 (1973). https://doi.org/10.1086/152045

    Article  ADS  Google Scholar 

  13. J. M. Uson and D.T.Wilkinson, Phys. Rev. Lett., 49, 1463–1465 (1982). https://doi.org/10.1103/PhysRevLett.49.1463

    Article  ADS  Google Scholar 

  14. J. M. Uson and D.T.Wilkinson, Astrophys. J. Lett., 277, L1–L3 (1984). https://doi.org/10.1086/184188

    Article  ADS  Google Scholar 

  15. P. J. E. Peebles, Astrophys. J. Lett., 263, L1–L5 (1982). https://doi.org/10.1086/183911

    Article  ADS  Google Scholar 

  16. C. L. Bennett, A. Kogut, G. Hinshaw, et al., Astrophys. J., 436, 423–442 (1994). https://doi.org/10.1086/174918

    Article  ADS  Google Scholar 

  17. A. J. Banday, K.M.Górski, C. L. Bennett, et al., Astrophys. J., bf 475, 393–398 (1997). https://doi.org/10.1086/303585

  18. https://images.nasa.gov/details-PIA16874

  19. https://images.nasa.gov/details-PIA16873

  20. https://images.nasa.gov/details-PIA16879

  21. C. L. Bennett, D. Larson, J. L. Weiland, et al., Astrophys. J. Suppl. Ser., 208, No. 2, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20

    Article  ADS  Google Scholar 

  22. G. Hinshaw, D. Larson, E. Komatsu, et al., Astrophys. J. Suppl. Ser., 208, No. 2, 19 (2013). 10.1088/0067-0049/208/2/19

  23. N. Aghanim, Y. Akrami, M. Ashdown, et al. (Planck Collaboration), Astron. Astrophys., 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

  24. A. A. Shatskiy, I. D. Novikov, O.K. Silchenko, et al., Mon. Not. Roy. Astron. Soc., 420, No. 4, 3017–3080 (2012). https://doi.org/10.1111/j.1365-2966.2012.20203.x

    Article  Google Scholar 

  25. A. V. Zasov and N. A. Zaitseva, Astron. Lett., 43, No. 7, 439–451 (2017). https://doi.org/10.1134/S1063773717070052

    Article  ADS  Google Scholar 

  26. J. Tumlinson, Ch. Thom, J. K. Werk, et al., Astrophys. J., 777, No. 1, 59 (2013). https://doi.org/10.1088/0004-637X/777/1/59

    Article  ADS  Google Scholar 

  27. J.K.Werk, J.X. Prochaska, Ch. Thom, et al., Astrophys. J. Suppl. Ser., 204, No. 2, 17 (2013). https://doi.org/10.1088/0067-0049/204/2/17

    Article  ADS  Google Scholar 

  28. S. Borthakur, T. Heckman, J. Tumlinson, et al., Astrophys. J., 813, No. 1, 46 (2015). https://doi.org/10.1088/0004-637X/813/1/46

  29. R. Bordoloi, J. Tumlinson, J.K.Werk, et al., Astrophys. J., 796, No. 2, 136 (2014). https://doi.org/10.1088/0004-637X/796/2/136

  30. J. Tumlinson, M. S. Peeples, and J.K.Werk, Ann. Rev. Astron. Astrophys., 55, No. 1, 389–432 (2017). https://doi.org/10.1146/annurev-astro-091916-055240

    Article  ADS  Google Scholar 

  31. J. X. Prochaska, J.K.Werk, G. Worseck, et al., Astrophys. J., 837, No. 2, 169 (2017). https://doi.org/10.3847/1538-4357/aa6007

  32. S. H. Lim, H. J. Mo, H. Wang, and X. Yang, Astrophys. J., 889, No. 1, 48, 169 (2020). https://doi.org/10.3847/1538-4357/ab63df

  33. J.-P.Macquart, J. X. Prochaska, M.McQuinn, et al., Nature, 581, 391–395 (2020). https://doi.org/10.1038/s41586-020-2300-2

    Article  ADS  Google Scholar 

  34. A. V. Zasov, A. S. Saburova, A. V. Khoperskov, and S. A. Khoperskov, Phys. Usp., 60, No. 1, 3–39 (2017). https://doi.org/10.3367/UFNe.2016.03.037751

    Article  ADS  Google Scholar 

  35. I. de Martino, S. S. Chakrabarty, V. Cesare, et al., Universe, 6, No. 8, 107 (2020). https://doi.org/10.3390/universe6080107

    Article  ADS  Google Scholar 

  36. W.H. Press and P. Schechter, Astrophys. J., 187, 425–438 (1974). https://doi.org/10.1086/152650

    Article  ADS  Google Scholar 

  37. Ch. Conroy, R. H. Wechsler, and A. V. Kravtsov, Astrophys. J., 647, No. 1, 201–214 (2006). https://doi.org/10.1086/503602

    Article  ADS  Google Scholar 

  38. Q. Guo, S. White, Ch. Li, and M.Boylan-Kolchin, Mon. Not. Roy. Astron. Soc., 404, No. 3, 1111–1120 (2010). https://doi.org/10.1111/j.1365-2966.2010.16341.x

    Article  ADS  Google Scholar 

  39. S.Trujillo-Gomez, A. Klypin, J. Primack, and A. Romanowsky, Astrophys. J., 742, No. 1, 16 (2011). https://doi.org/10.1088/0004-637X/742/1/16

  40. M. Vogelsberger, S. Genel, and V. Springel, Mon. Not. Roy. Astron. Soc., 444, No. 2, 1518–1547 (2014). https://doi.org/10.1093/mnras/stu1536

    Article  ADS  Google Scholar 

  41. F. Lelli, S. S. McGaugh, and J.M.Schombert, Astron. J., 152, No. 6, 157 (2016). https://doi.org/10.3847/0004-6256/152/6/157

  42. L. Posti, F. Fraternali, and A. Marasco, Astron. Astrophys., 626, 56 (2019). https://doi.org/10.1051/0004-6361/201935553

  43. E. Corbelli, S. Lorenzoni, R. Walterbos, et al., Astron. Astrophys., 511, 89 (2010). https://doi.org/10.1051/0004-6361/200913297

  44. R. Genzel, N.M. F’orster Schreiber, H. Ubler, et al., Nature, 543, 397–401 (2017). https://doi.org/10.1038/nature21685

    Article  ADS  Google Scholar 

  45. A. D. Goulding, J.E.Greene, Ch.-P. Ma, et al., Astrophys. J., 826, No. 2, 167 (2016). https://doi.org/10.3847/0004-637X/826/2/167

  46. M.E. Anderson, E. Churazov, and J.N.Bregman, Mon. Not. Roy. Astron. Soc., 455, No. 1, 227–243 (2016). https://doi.org/10.1093/mnras/stv2314

    Article  ADS  Google Scholar 

  47. A. Bogdán, H. Bourdin, W.R. Forman, et al., Astrophys. J., 850, No. 1, 98 (2017). https://doi.org/10.3847/1538-4357/aa9523

  48. X. Dai, M. E. Anderson, J.N.Bregman, and J. H. Miller, Astrophys. J., 755, No. 2, 107 (2012). https://doi.org/10.3847/0004-637X/755/2/107

  49. A. Bogdán, W.R. Forman, R. P. Kraft, and Ch. Jones, Astrophys. J., 772, No. 2, 98 (2013). https://doi.org/10.1088/0004-637X/772/2/98

  50. J.-T. Li, J. N. Bregman, Q. D. Wang, et al., Astrophys. J. Lett., 855, No. 2, L24 (2018). https://doi.org/10.3847/2041-8213/aab2af

  51. J.-T. Li, J. N. Bregman, and Q.D.Wang, Astrophys. J. Suppl. Ser., 233, 20 (2017). https://doi.org/10.3847/1538-4365/aa96fc

  52. J.-T. Li and Q.D.Wang, Mon. Not. Roy. Astron. Soc., 428, No. 3, 2085–2108 (2013). https://doi.org/10.1093/mnras/sts183

    Article  ADS  Google Scholar 

  53. J. Rasmussen, J. Sommer-Larsen, K. Pedersen, et al., Astrophys. J., 697, No. 1, 79–93 (2009). https://doi.org/10.1088/0004-637X/697/1/79

  54. M. Aker, K. Altenm¨uller, M. Arenz, et al., KATRIN Collaboration, Phys. Rev. Lett., 123, 221802 (2019). https://doi.org/10.1103/PhysRevLett.123.221802

    Article  ADS  Google Scholar 

  55. S. Tremaine and J.E.Gunn, Phys. Rev. Lett., 42, No. 6, 407–410 (1979). https://doi.org/10.1103/PhysRevLett.42.407

    Article  ADS  Google Scholar 

  56. L. Roszkowski, E.M. Sessolo, and S. Trojanowski, Reports Progress Phys., 81, No. 6, 066201 (2018). https://doi.org/10.1088/1361-6633/aab913

  57. R. Bernabei, P. Belli, R. Cerulli, et al., DAMA Collaboration, Phys. Lett., 480, 23–31 (2000). https://doi.org/10.1016/S0370-2693(00)00405-6

    Article  Google Scholar 

  58. R. Bernabei, P. Belli, F. Cappella, et al., DAMA Collaboration, Eur. Phys. J. C, 73, 2648 (2013). https://doi.org/10.1140/epjc/s10052-013-2648-7

  59. E. Aprile, J. Aalbers, F. Agostini, et al., XENON Collaboration, JCAP, 1604, 27 (2016). https://doi.org/10.1088/1475-7516/2016/04/027

  60. E. Aprile, J. Aalbers, F. Agostini, et al., XENON Collaboration, Phys. Rev. D, 94, No. 12, 122001 (2016). https://doi.org/10.1103/PhysRevD.94.122001

  61. D. S. Akerib, S. Alsum, H.M.Araújo, et al., LUX Collaboration, Phys. Rev. Lett., 118, No. 2 (2017).

  62. A. Tan, M. Xiao, X. Cui, et al., PandaX-II Collaboration, Phys. Rev. Lett., 117, No. 12, 121303 (2016). https://doi.org/10.1103/PhysRevLett.117.121303

  63. O. Adriani, G.C. Barbarino, G. A. Bazilevskaya, et al., PAMELA Collaboration, Nature, 458, 607-609 (2009). https://doi.org/10.1038/nature07942

    Article  ADS  Google Scholar 

  64. O. Adriani, G.C. Barbarino, G. A. Bazilevskaya, et al., PAMELA Collaboration, Phys. Rev. Lett., 111, No. 8, 81102 (2013). https://doi.org/10.1103/PhysRevLett.111.081102

  65. A. A. Abdo, M. Ackermann, M. Agjekko, et al., Fermi LAT Collaboration, Phys. Rev. Lett., 102, 181101 (2016). https://doi.org/10.1103/PhysRevLett.102.181101

    Article  ADS  Google Scholar 

  66. S. Hoof, A.Geringer-Sameth, R. Trotta, et al., JCAP, 02, 012 (2020). https://doi.org/10.1088/1475-7516/2020/02/012

  67. S. Giagu, Frontiers in Physics, 7, 75 (2019). https://doi.org/10.3389/fphy.2019.00075

    Article  ADS  Google Scholar 

  68. A. G. Riess, S. Casertano, W. Yuan, et al., Astrophys. J., 876, No. 1, 85 (2019). https://doi.org/10.3847/1538-4357/ab1422

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Sil’chenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 715–729, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil’chenko, O.K. Observational Signatures of Dark Matter. Radiophys Quantum El 63, 643–655 (2021). https://doi.org/10.1007/s11141-021-10087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10087-7

Navigation