Skip to main content
Log in

Dark Matter Particles: Properties and Detections

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

One of the most accepted ideas in modern cosmology to explain a number of puzzling astronomical observations is the existence of Dark Matter in the Universe, even though it has not been directly observed. We recall the motivation for its existence according to its influence on visible matter and its characteristics in terms of famous candidate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.K. Raychaudhuri, S. Banerji, and A. Banerjee, General Relativity, Astrophysics, and Cosmology (Springer-Verlag, New-York, 1992).

    Book  Google Scholar 

  2. J. V. Narlikar, An Introduction to Cosmology (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  3. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008).

    MATH  Google Scholar 

  4. D. N. Spergel et al., “First year of WMAP observations: determination of cosmological parameters,” Astrophys. J. Suppl. Series, 148, 1 (2003).

    Article  ADS  Google Scholar 

  5. M. Tegmark et al., “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D. 69, 10 (2004).

    Article  MATH  Google Scholar 

  6. G. Bertone, D. Hooper, and J. Silk, “Particle Dark Matter: evidence, candidates and constraints,” Phys. Rep. 405, 5–6 (2005).

    Article  Google Scholar 

  7. P. Fayet and S. Ferrara, “Supersymmetry,” Phys. Rep. 32, 5 (1977).

    Article  Google Scholar 

  8. C. Autermann, “Experimental status of supersymmetry after the LHC Run-I,” Progress in Particle and Nuclear Physics 90, 125 (2016).

    Article  ADS  Google Scholar 

  9. F. Zwicky, “Spectral displacement of extra galactic nebulae,” Helv. Phys. Acta 6, 110 (1933).

    ADS  MATH  Google Scholar 

  10. V. C. Rubin and W K. Ford, “Rotation of the Andromeda nebula from a spectroscopic survey of emission regions,” Astroph. J. 159 379, (1970).

    Article  ADS  Google Scholar 

  11. J. D. Simon, A. D. Bolatto, A. Leroy, L. Blitz, and E. L. Gates, “High-resolution measurements of the halos of four Dark Matter-dominated galaxies,” Astroph. J. 621, 757 (2005).

    Article  ADS  Google Scholar 

  12. J. F Navarro, C. S. Frenk, and S. D. M. White, “The atructure of cold Dark Matter halos,” Astroph. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  13. B. Moore, F. Governato, T. Quinn, J. Stadel, and G. Lake, Resolving the structure of cold Dark Matter halos,” Astrophys. J. 499 L5 (1998).

    Article  ADS  Google Scholar 

  14. A. Gando et al., “Enhanced constraints on 13 from a three flavor oscillation analysis of reactor antineutrinos at KamLAND,” Phys. Rev. D 83, 052002 (2011).

    Article  ADS  Google Scholar 

  15. D. M. Wittman et al., “Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales,” Nature. 405, 143 (2000).

    Article  ADS  Google Scholar 

  16. G. Gamow, “Expanding universe and the origin of elements,” Phys. Rev. 70, 572 (1946).

    Article  ADS  Google Scholar 

  17. A. A. Penzias and R. W Wilson, “A measurement of excess antenna temperature at 4080-Mc/s,” Astroph. J. 142, 419 (1965).

    Article  ADS  Google Scholar 

  18. C. L. Bennett etal., “Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations,” Astroph. J. 436, 423 (1994).

    Article  ADS  Google Scholar 

  19. “Planck 2018 results. I. Overview and the cosmological legacy of Planck-Planck collaboration,” Nature 553, 7689 (2018).

  20. M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astroph. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  21. D. Clowe, A. Gonzalez, and M. Markevitch. “Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter,” Astroph.J. 604, 2 (2004).

    Article  Google Scholar 

  22. D. Clowe et al., “A direct empirical proof of the existence of dark matter,” Astrophys J. 648, 2 (2006).

    Article  Google Scholar 

  23. J. D. Bekenstein, “Relativistic gravitation theory for the MOND paradigm,” Phys. Rev. D 70, 083509 (2004).

    Article  ADS  Google Scholar 

  24. G. W Angus, H. Y. Shan, H. S. Zhao, and B. Famaey, “On the law of gravity, the mass of neutrinos and the proof of dark matter,” Astroph. J. 654, L13 (2007).

    Article  ADS  Google Scholar 

  25. J. L. Feng, A. Rajaraman, and F. Takayama, “Superweakly interacting massive particles,” Phys. Rev. Lett. 91, 011302 (2003).

    Article  ADS  Google Scholar 

  26. J. L. Feng, S. f. Su, and F. Takayama, “SuperWIMP gravitino Dark Matter from slepton and sneutrino decays,” Phys. Rev. D 70, 63514 (2014).

    Article  Google Scholar 

  27. C. Arina and N. Fornengo, “Sneutrino cold dark matter, a new analysis: relic abundance and detection rates,” JHEP 11, 029 (2007).

    Article  ADS  Google Scholar 

  28. D. Cerdeno, C. Munoz, and O. Seto, “Right-handed sneutrino as thermal Dark Matter,” Phys. Rev. D. 79, 023510 (2008).

    Article  ADS  Google Scholar 

  29. H. Pagels and J. R. Primack, “Supersymmetry, cosmology and new TeV physics,” Phys. Rev. Lett. 48, 223 (1982).

    Article  ADS  Google Scholar 

  30. M. Pospelov, Particle physics catalysis of thermal Big Bang nucleosynthesis,” Phys. Rev. Lett. 98, 23 (2007).

    Article  Google Scholar 

  31. S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 1 (1981).

    Article  Google Scholar 

  32. G. R. Farrar, and P. Fayet, Phys. Lett. B. 76, 5 (1978).

    Article  Google Scholar 

  33. R. D. Peccei and H. R. Quinn, “CP, conservation in the presence of pseudoparticles,” Phys. Rev. Lett. 38, 1440 (1977).

    Article  ADS  Google Scholar 

  34. G. Ballesteros, J. Redondo, A. Ringwald, and C. Tamarit, JCAP 08, 001 (2017).

    ADS  Google Scholar 

  35. B. Carr, “Primordial black holes as dark matter and generators of cosmic structure,” arXiv: 1901.07803.

  36. H. E. Haber and D. Wyler, “Radiative neutralino decay,” Nucl. Phys. B. 323, 267 (1989).

    Article  ADS  Google Scholar 

  37. G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric Dark Matter,” Phys. Rep. 267, 195 (1996).

    Article  ADS  Google Scholar 

  38. F. Calore, P. D. Serpico, and B. Zaldivar, “Dark matter constraints from dwarf galaxies: a data-driven analysis,” JCAP 10, 029 (2018).

    Article  ADS  Google Scholar 

  39. P. Agrawal, B. Batell, P. J. Fox, and R. Harnik, “WIMPs at the galactic center,” JCAP 1505, 2015 (2014).

    Google Scholar 

  40. S. Ando and D. Nagai, “Fermi-LAT constraints on Dark Matter annihilation cross-section from observations of the Fornax cluster,” JCAP. 1217, 017 (2012).

    Article  Google Scholar 

  41. R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI,” Euro Phys. J. C 56, 3 (2008).

    Article  Google Scholar 

  42. TEXONO Collaboration: S. T. Lin et al., “New limits on spin-independent and spin-dependent couplings of low-mass WIMP Dark Matter with a germanium detector at a threshold of 220 eV,” Phys. Rev. D. 79, 061101 (2009).

    Article  Google Scholar 

  43. A. Ventura, “Recent results from SUSY searches with ATLAS and prospects for the HL-LHC,” ATL-PHYS-PROC. 022, 6 (2019).

    Google Scholar 

  44. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B. 716, 1 (2012).

    Article  ADS  Google Scholar 

  45. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their families for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Eddine Ennadifi.

Additional information

The present issue of the journal is No. 100 since it was founded in 1995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennadifi, S.E., Douhou, K. Dark Matter Particles: Properties and Detections. Gravit. Cosmol. 25, 310–318 (2019). https://doi.org/10.1134/S0202289319040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319040054

Navigation