Skip to main content
Log in

Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of “self-consistent” collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of “soft” and “hard” regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, The Progation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1964).

    Google Scholar 

  2. A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  3. L. M. Erukhimov, S. A. Metelev, N. A. Mityakov, and V. L. Frolov, Radiophys. Quantum Electron., 25, No. 5, 348 (1982).

    Article  ADS  Google Scholar 

  4. V. L. Frolov, E. N. Sergeev, G. P. Komrakov, et al., J. Geophys. Res., 109, No. A7, A07304 (2004).

    Article  ADS  Google Scholar 

  5. E. N. Sergeev, S. M. Grach, and P. V. Kotov, Radiophys. Quantum Electron., 47, No. 3, 185 (2004).

    Article  ADS  Google Scholar 

  6. L. M. Erukhimov, S. A. Metelev, É E. Mityakova, et al., in: V. Yu. Trakhtengerts, ed., Thermal Nonlinear Phenomena in Plasmas (collected papers) [in Russian], Inst. Appl. Phys., Akad. Nauk SSSR, Gorky (1979), p. 7.

  7. L. M. Degtyarev, R. Z. Sagdeev, G. I. Soloviev, et al., Fiz. Plazmy, 6, No. 3, 485 (1980).

    ADS  Google Scholar 

  8. D. V. Shapiro and V. I. Shevchenko, in: A. A. Galeeev and R. N. Sudan, eds., Handbook of Plasma Physics 2, Elsevier, Amsterdam (1984), p. 123.

  9. A. G. Litvak and G. M. Fraiman, in: A. G. Litvak, ed., Interaction of Strong Electromagnetic Fields with a Collisionless Plasma (collected papers) [in Russian], Inst. Appl. Phys., Akad. Nauk SSSR, Gorky (1980), p. 50.

  10. A. G. Litvak, in: M. A. Leontovich, ed., Reviews of Plasma Physics, Vol. 10, Consultants Bureau, New York (1986), p. 293.

  11. A. G. Litvak, Rev. Plasma Phys., 10, 193 (1986).

    Google Scholar 

  12. A. G. Litvak, V. A. Mironov, and G. M. Fraiman, JETP Lett., 22, 174 (1975).

    ADS  Google Scholar 

  13. A. G. Litvak, V. A. Mironov, and A. M. Feigin, Sov. Phys. JETP, 50, 684 (1979).

    ADS  Google Scholar 

  14. A. V. Kochetov, V. A. Mironov, and M. V. Shaleev, Abstracts of the XXIX Zvenigorod Conf. on Plasma Physics and Controlled Fusion, Zvenigorod, February 25–March 1, 2002 [in Russian], p. 178.

  15. A. V. Kochetov, V. A. Mironov, G. I. Terina, and M. V. Shaleev, Proc. V Int. Workshop “Strong microwaves in Plasmas,” 1–9 August, 2002 Inst. Appl. Phys. RAS, Nizhny Novogorod (2003), p. 505.

  16. A. V. Kochetov and V. A. Mironov, in: Abstracts of XXXV Int. (Zvenigorod) Conf. on Plasma Physics and Controlled Fusion, Zvenigorod of the Moscow region, February 11–15, 2008 [in Russian], p. 142.

  17. A. V. Kochetov and E. Mjøelhus, Proc. IV Int. Workshop “Strong Microwaves in Plasmas,” 1–9 August, 2000, Inst. Appl. Phys. RAS, Nizhny Novgorod, Vol. 2, p. 491.

  18. A. Hanssen, E. Mjøelhus, D. F. DuBois, and N. A. Rose, J. Geophys. Res., 97, No. A8, 12 (1995).

    Google Scholar 

  19. E. Mjøelhus, A. Hanssen, and D. F. DuBois, J. Geophys. Res., 100, No. A9, 17527 (1995).

    Article  ADS  Google Scholar 

  20. B. Eliasson and B. Thid’e, J. Geophys. Res., 113, A02313 (2008).

    ADS  Google Scholar 

  21. B. Eliasson and L. Stenflo, J. Geophys. Res., 113, A02305 (2008).

    ADS  Google Scholar 

  22. B. Eliasson, Mod. Phys. Lett., 27, No. 8, 1330005 (2013).

    Article  ADS  Google Scholar 

  23. A. V. Kochetov, V. A. Mironov, V. N. Bubukina, and G. I. Terina, Physica D, 152–153, 723 (2001).

  24. A. V. Kochetov, V. A. Mironov, and G. I. Terina, Adv. Space Res., 29, No. 9, 1369 (2002).

    Article  ADS  Google Scholar 

  25. A. V. Kochetov and G. I. Terina, Adv. Space Res., 38, 2490 (2006).

    Article  ADS  Google Scholar 

  26. D. D. McCracken and W. S. Dorn, Numerical Methods and FORTRAN Programming, John Wiley, New York (1966).

    MATH  Google Scholar 

  27. A. A. Samarsky, Theory of the Difference Schemes [in Russian], Nauka, Moscow (1983).

  28. G. M. Fraiman, Radiophys. Quantum Electron., 16, No. 8, 883 (1973).

    Article  ADS  Google Scholar 

  29. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of the Ionospheric Propagation of Radio Waves [in Russian], Nauka, Moscow (1973).

  30. P. Y. Cheung, A. Y. Wong and T. Tanikawa, et al., Phys. Rev. Lett., 62, 2676 (1989).

    Article  ADS  Google Scholar 

  31. B. Isham, M. T. Rietveld, T. Hagfors, et al., Phys. Rev. Lett., 83, 2576 (1996).

    Article  ADS  Google Scholar 

  32. B. Thide, E. N. Sergeev, S. M. Grach, et al., Phys. Rev. Lett., 95, 255002 (2005).

    Google Scholar 

  33. S. A. Dmitriev, G. I. Terina, and I. A. Tushentsova, in: Modified Ionospheric Plasma. III Volga Intern. Summer School Space Plasma Phys. 1–11 June 1997, N. Novgorod, Uppsala, 1997, p. 44.

  34. G. Terina, J. Atm. Terr. Phys., 57, 273 (1995).

    Article  ADS  Google Scholar 

  35. G. Terina, Radiophys. Quantum Electron., 39, No. 2, 140 (1996).

    Article  ADS  Google Scholar 

  36. G. Terina, Radiophys. Quantum Electron., 43, No. 11, 862 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kochetov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 11, pp. 967–979, November 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochetov, A.V. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence. Radiophys Quantum El 60, 866–876 (2018). https://doi.org/10.1007/s11141-018-9853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9853-z

Navigation