Skip to main content
Log in

Modeling of the Intracloud Lightning Discharge Radio Emission

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This paper aims at analyzing the broadband part of electromagnetic emission from thunderclouds in a frequency range of tens of kilohertz to hundreds of megahertz. A model of the intracloud lightning discharge formation is presented. The lightning formation is described as a stochastic growth of the branching discharge channels, which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure is calculated deterministically. The effect of the initial charge density in the cloud and the parameters of the conducting channels on spatio-temporal characteristics of the currents and structure of the lightning discharge is studied. The discharge radio emission is calculated by summing up the radiation fields of each channel at the observation point. The standard model for a separate discharge current is adopted, and the electromagnetic radiation in the far zone is estimated. It is found that the obtained frequency spectra exhibit a universal power-law behavior. The results of the modeling agree with known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Rakov and M. A. Uman, Lightning, Physics, and Effects, Cambridge University Press (2003).

  2. D. E. Proctor, J. Geophys. Res., 76, 1478 (1971).

    Article  ADS  Google Scholar 

  3. R. J.Thomas, P.R.Krehbiel, W.Rison, et al., Geophys. Res. Lett ., 28, No. 1, 143 (2001).

    Article  ADS  Google Scholar 

  4. D. I. Iudin and V.Yu.Trakhtengerts, Fiz. Atmos. Okeana, 36, No. 5, 597 (2000).

    Google Scholar 

  5. A.P. Nickolaenko, C.Price, and D. I. Iudin, Geophys. Res. Lett ., 27, 3185 (2000).

    Article  ADS  Google Scholar 

  6. D. I. Iudin and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 44, Nos. 5–6, 386 (2001).

    Article  Google Scholar 

  7. E.R.Mansell, D.R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res. D, 107, No. 9, 4075 (2002).

    Article  ADS  Google Scholar 

  8. D. I. Iudin, V.Yu.Trakhtengerts, and M.Hayakawa, Phys. Rev. E, 68, 016601 (2003).

    Article  ADS  Google Scholar 

  9. P. R.Krehbiel, J.A.Riousset, V. P. Pasko, et al., Nature, 1, 233 (2008).

    Google Scholar 

  10. E.A.Mareev, D. I. Iudin, V.Yu.Trakhtengerts, et al., Proekt. Tekhnol. Élektron. Sredstv ., 4, 7 (2004).

    Google Scholar 

  11. P. Bak, C.Tang, and K. Wiesenfeld, Phys. Rev. Lett ., 59, 381 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Bak, C.Tang, and K. Wiesenfeld, Phys. Rev. A, 38, 364 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. P. Bak, How Nature Works (The Science of Self-Organized Criticality), Oxford Univ. Press (1997).

  14. H. J. Jensen, Self-Organized Criticality, Cambridge Univ. Press (1998).

  15. G.Vecchi, D. Labate, and E.Canavero, Radio Sci ., 29, No. 4, 691 (1994).

    Article  ADS  Google Scholar 

  16. D. M. Le Vine and R. Meneghini, Radio Sci ., 13, No. 5, 801 (1978).

    Article  ADS  Google Scholar 

  17. D. M. Le Vine and R. Meneghini, J. Geophys. Res., 83, 2377 (1978).

    Article  ADS  Google Scholar 

  18. M. Hayakawa, F.Yokose, Y. Ida, and D. I. Iudin, J. Atmos. Electricity, 26, No. 2, 51 (2006).

    Google Scholar 

  19. D. I. Iudin, V. Y.Trakhtengerts, and A.N.Grigoriev, Nuclear Instruments & Methods in Physics Research A, 502, 526 (2003).

    Article  ADS  Google Scholar 

  20. M. Hayakawa, T.Nakamura, D. Iudin, et al., J. Geophys. Res. D, 110, No. 6, D06104 (2005).

    ADS  Google Scholar 

  21. L. Niemeyer, L. Pietronero., and H. J.Wiesmann, Phys. Rev. Lett ., 52, No. 12, 1033 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  22. H. J. Wiesmann and H.R. Zeller, J. Appl. Phys., 60, 1770 (1986).

    Article  ADS  Google Scholar 

  23. N. Femia, L. Niemeyer, and V.Tucci, J. Phys. D, 26, 619 (1993).

    Article  ADS  Google Scholar 

  24. M. Hayakawa, D. I. Iudin, V. Y.Trakhtengerts, J. Atmos. Solar-Terr. Phys., 70, 1660 (2008).

    Article  ADS  Google Scholar 

  25. X. Gou, X. M.Chen, Y.Du, and W.Dong, Geophys. Res. Lett ., 37, L11808 (2010).

    ADS  Google Scholar 

  26. V. Y.Trakhtengerts, D. I. Iudin, and A.V.Kulchitsky, Phys. Plasmas, 9, No. 6, 2762 (2002).

    Article  ADS  Google Scholar 

  27. V. Y.Trakhtengerts, D. I. Iudin, A. V.Kulchitsky, and M. Hayakawa, Phys. Plasmas, 10, No. 8, 3290 (2003).

    Article  ADS  Google Scholar 

  28. P. R. Krehbiel, in: R. L.Gardner, ed., The Earth’s Electrical Environment, National Academy Press, Washington (1986), p. 90.

    Google Scholar 

  29. E. R. Williams, J. Geophys. Res. D, 94, No. 11, 13151 (1989).

    Article  ADS  Google Scholar 

  30. J. A.Riousset, V.P. Pasko, P.R.Krehbiel, et al., J. Geophys. Res., 112, D15203 (2007).

    Article  ADS  Google Scholar 

  31. T.C. Marshall, M. P.McCarthy, and W. D. Rust, J. Geophys. Res. D, 100, No. 4, 7097 (1995).

    Article  ADS  Google Scholar 

  32. V.P. Pasko, U. S. Inan, and T. F. Bell, Geophys. Res. Lett ., 27, No. 23, 497 (2000).

    Article  ADS  Google Scholar 

  33. Yu.P.Raizer, Gas Discharge Physics, Springer, Berlin (2011).

    Google Scholar 

  34. I. Gallimberti, G. Bacchiega, A. Bondiou-Glergerie, and P. Lalande, Comptes Rendus-Physique, 3, No. 10, 1335 (2002).

    Article  ADS  Google Scholar 

  35. D. I. Iudin, in: Nonlinear Waves—2012, Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (2013), p. 67.

  36. V.Yu.Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, 584 (1989).

    Google Scholar 

  37. S. Adalev, M.Hayakawa, N. V.Korovkin, et al., IEICE Electron. Express, 3, No. 10, 209 (2006).

    Article  Google Scholar 

  38. S. Adalev, M.Hayakawa, N. V.Korovkin, et al., J. Appl. Phys., 101, 083302 (2007).

    Article  ADS  Google Scholar 

  39. J. M. Bazelyan and Yu.P.Raizer, Spark Discharge, CRC Press, Boca Raton, New York (1998).

    Google Scholar 

  40. M.Boulch, J.Hamelin, and C. Weidman, in: R. L.Gardner, ed., Lightning Electromagnetics (1987), p. 287.

  41. D.E. Proctor, R. Uytenbogaargt, and B. M. Meredith, J. Geophys. Res. D, 93, No. 10, 12683 (1988).

    Article  ADS  Google Scholar 

  42. D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms, Oxford Univ. Press (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Iudin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 03, pp. 187–199, March 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iudin, D.I., Iudin, F.D. & Hayakawa, M. Modeling of the Intracloud Lightning Discharge Radio Emission. Radiophys Quantum El 58, 173–184 (2015). https://doi.org/10.1007/s11141-015-9591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9591-4

Keywords

Navigation