Skip to main content

Advertisement

Log in

On the Possibility of Studying the Reactions of the Thermal Decomposition of Energy Substances by the Methods of High-Resolution Terahertz Spectroscopy

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We show prospects for using the method of high-resolution terahertz spectroscopy for a continuous analysis of the decomposition products of energy substances in the gas phase (including short-lived ones) in a wide temperature range. The experimental setup, which includes a terahertz spectrometer for studying the thermal decomposition reactions, is described. The results of analysis of the gaseous decomposition products of energy substances by the example of ammonium nitrate heated from room temperature to 167°C are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Townes and A. L. Schawlow, Microwave Spectroscopy, McGraw-Hill, New York (1955).

    Google Scholar 

  2. A. B. Brailovsky, V.V. Khodos, V. L. Vaks, et al., Infrared & Millimeter Waves, 20, No. 5, 883 (1999).

    Article  Google Scholar 

  3. V. V. Khodos, D.A. Ryndyk, V. L. Vaks, et al., Eur. Phys. J. Appl. Phys., 25, 203 (2004).

    Article  ADS  Google Scholar 

  4. V. Vaks, J. Infrared, Millimeter & Terahertz Waves, 33, 43 (2012).

    Article  Google Scholar 

  5. S. Löbbecke, M. Kaiser, and G. A. Chiganova, in: U. Teipel, ed., Energetic Materials, Wiley, Weinheim (2005), Ch. 10, p. 367.

  6. J. S. Lee, C. K. Hsu, and C. L. Chang, Thermoch. Acta, 392–393, 173 (2002).

    Article  Google Scholar 

  7. V. L. Vaks, E.G. Domracheva, G. A. Soegova, et al., Zh. Radioélektron., No. 2, paper 3 (2016).

  8. G.B. Manelis, G.M. Nazin, and Yu. I. Rubtsov, Thermal Decomposition and Burning of Explosives and Powders [in Russian], Nauka, Moscow (1996),

    Google Scholar 

  9. Sh. Chaturvedi and P.N. Dave, J. Energ. Mater., 31, 1 (2013).

    Article  ADS  Google Scholar 

  10. V. M. Olevsky, The Ammonium Nitrate Technology [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  11. J. D. Brander, N. M. Junk, J.W. Lawrence, and J. Robins, J. Chem. Eng. Data, 7, No. 2, 227 (1962).

    Article  Google Scholar 

  12. W. A. Rosser, S. H. Inami, and H. Wise, J. Phys. Chem., 67, 1753 (1963).

    Article  Google Scholar 

  13. K. R. Brower, J.C. Oxley, and M. Tewari, J. Phys. Chem., 93, No. 10, 4029 (1989).

    Article  Google Scholar 

  14. M. J. Rossi, J.C. Bottaro, and D. F. McMillen, Int. J. Chem. Kinetics, 25, 549 (1993).

    Article  Google Scholar 

  15. W. Gordy and R. L. Cook, Techniques of Chemistry, Vol. 18, Microwave Molecular Spectra, Wiley, New York (1984).

    Google Scholar 

  16. H. M. Pickett, R. L. Poynter, E. A. Cohen, et al., J. Quant. Spectrosc. Radiat. Transfer, 60, 883 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Chernyaeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 9, pp. 839–850, September 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaks, V.L., Domracheva, E.G., Chernyaeva, M.B. et al. On the Possibility of Studying the Reactions of the Thermal Decomposition of Energy Substances by the Methods of High-Resolution Terahertz Spectroscopy. Radiophys Quantum El 60, 750–760 (2018). https://doi.org/10.1007/s11141-018-9843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9843-1

Navigation