Skip to main content
Log in

Experimental Study of High-Current Cathodes Based on Diamond Films as Elements of High-Power Compressors of Microwave Pulses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying the emissive properties of molybdenum cathodes with deposed diamond films at strong currents, as well as the dependences of these properties on the deposition regimes and the structure of diamond films. The emissive properties of the films are determined by analyzing the output parameters of a high-power compressor of microwave pulses, which is based on diamond-coated cathodes. It is shown that the use of such cathodes allows one to increase the emission current and the amplification factor of the microwave compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyatz, Explosive Electron Emission [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  2. G. A. Mesyatz and D. I. Proskurovsky, Pulse Discharge in Vacuum [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  3. W. Zhu, Ed., Fundamentals of vacuum microelectronics, Wiley and Sons, New York (2000).

    Google Scholar 

  4. K. Subramanian, W. P. Kang, J. L. Davidson, et al., Diamond Relat. Mater., 17, 1808 (2008).

    Article  ADS  Google Scholar 

  5. K. V. Reich, E. D. Eidelman, A. T. Dideykin, and A. Ya. Vul’, Tech. Phys., 53, No. 2, 261 (2008).

    Article  Google Scholar 

  6. X. Lu, Q. Yang, C. Xiao, and A. Hirose, Thin Solid Films, 516, 4217 (2008).

    Article  ADS  Google Scholar 

  7. M. W. Geis, N. N. Efremow, K. K. Krohn, et al., Nature, 393, No. 4, 431 (1998).

    Article  ADS  Google Scholar 

  8. S. S. Proffitt, S. J. Probert, M. D. Wichael, et al., Diamond Relat. Mater., 8, 768 (1999).

    Article  ADS  Google Scholar 

  9. V. V. Zhirnov, O. A. Shenderova, D. L. Jaeger, et al., Phys. Solid State, 46, No. 4, 657 (2004).

    Article  ADS  Google Scholar 

  10. A. T. Rakhimov, Phys. Usp., 43, 926 (2000).

    Article  ADS  Google Scholar 

  11. B. Wang, Y. Xiong, L. Xia, et al., Diamond Relat. Mater., 20, 433 (2011).

    Article  ADS  Google Scholar 

  12. Q. Liao, Y. Zhang, L. Xia, et al., J. Phys. D, 40, 6626 (2007).

    Article  ADS  Google Scholar 

  13. Y. Shen, L. Xia, H. Zhang, et al., Phys. Rev. Spec. Top. Accel. Beams, 14, 104701 (2011).

    Article  ADS  Google Scholar 

  14. O. Ivanov, V. Isaev, D. Radishev, et al., IEEE Trans. Plasma Sci., 39, No. 11, 2794 (2011).

    Article  ADS  Google Scholar 

  15. V. V. Chernov, O. A. Ivanov, V. A. Isaev, et al., Diamond Relat. Mater., 37, 87 (2013).

    Article  ADS  Google Scholar 

  16. A. L. Vikharev, A. M. Gorbachev, A. V. Kozlov, et al., Diamond Relat. Mater., 17, 1055 (2008).

    Article  ADS  Google Scholar 

  17. O. A. Ivanov, V. A. Isaev, M. A. Lobaev, et al., Appl. Phys. Lett., 97, 031501 (2010).

    Article  ADS  Google Scholar 

  18. O. A. Ivanov, M. A. Lobaev, A. L. Vikharev, et al., Phys. Rev. Lett., 110, 115002 (2013).

    Article  ADS  Google Scholar 

  19. O. A. Ivanov, V. A. Isaev, M. A. Lobaev, et al., Phys. Rev. Spec. Top. Accel. Beams, 14, 061301 (2011).

    Article  ADS  Google Scholar 

  20. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston (1998).

    MATH  Google Scholar 

  21. V. P. Tarakanov, User’s manual for code KARAT, Berkeley Research Associates, Inc., Springfield (1992).

    Google Scholar 

  22. Ya. E. Pokrovsky, Zh. Tekh. Fiz., 24, No. 7, 1229 (1954).

    Google Scholar 

  23. D. Zhou, A. R. Krauss, L. C. Qin, et al., J. Appl. Phys., 82, No. 9, 4546 (1997).

    Article  ADS  Google Scholar 

  24. K. Wu, E. G. Wang, Z. X. Cao, et al., J. Appl. Phys., 88, No. 5, 2967 (2000).

    Article  ADS  Google Scholar 

  25. F. J. Himpsel, J. A. Knapp, J. A. van Vechten, et al., Phys. Rev. B, 20, 624 (1979).

    Article  ADS  Google Scholar 

  26. M. W. Geis, N. N. Efremow, K. E. Krohn, et al., Nature, 393, No. 4, 431 (1998).

    Article  ADS  Google Scholar 

  27. I. I. Vlasov, M. V. Kazyuba, A. A. Shiryaev, et al., JETP Lett., 95, No. 7, 39 (2012).

    Article  Google Scholar 

  28. K. Y. Teng, H. C. Chen, H. Y. Chiang, et al., Diamond Relat. Mater., 24, 126 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chernov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 10, pp. 797–806, October 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, O.A., Lobaev, M.A., Chernov, V.V. et al. Experimental Study of High-Current Cathodes Based on Diamond Films as Elements of High-Power Compressors of Microwave Pulses. Radiophys Quantum El 57, 711–719 (2015). https://doi.org/10.1007/s11141-015-9557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9557-6

Keywords

Navigation