Skip to main content
Log in

Parallel Monitoring of Living Cell Cultures by Means of Digital-Holography and Fluorescent Microscopy

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose using the method of holographic microscopy to detect fine morphologic changes in living cells. An “LSM 510” laser confocal scanning microscope is modified to allow recording digital microholograms which can be used to reconstruct the amplitude and phase of the radiation transmitting through the sample. Measuring the phase increment of the object beam in cells and the intercellular space yields information on the optical length of the ray path in the cells (spatial dimensions and the refractive index), which in turn contains information on changes in the morphology and intracellular contents. Calcium activity is studied by means of fluorescent microscopy which makes it possible to detect minor variations in the intracellular concentration of calcium ions. By studying the dynamics of calcium oscillations and variations in the optical thickness, conclusions are made about the interrelation of functional and morphological variations, and comparative analysis of these variations is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. L. Gustafsson, Proc. Nat. Acad. Sci., 102, No. 37, 13081 (2005).

    Article  ADS  Google Scholar 

  2. T. Sun, J. Liu, H.Yan, et al., Opt. Lett., 38, No. 17, 3471 (2013).

    Article  ADS  Google Scholar 

  3. J. Hong and M.K.Kim, Digital Holography and 3D Imaging. Technical Digest Opt. Soc. Amer., Dth1A.3 (2013).

  4. E. Abbe, Arch. Mikrosk. Anat., 9, 431 (1873).

    Google Scholar 

  5. F. Zernike, Physica, No. 9, 686 (1942).

  6. G.Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill, New York (2011).

    Google Scholar 

  7. V.V.Dudenkova, M. S.Murav’eva, A. I. Rybnikov, and Yu.N. Zakharov, Radiophys. Quantum Electron., 57, Nos. 8–9 (551).

  8. T. Shaked Natan, B.Katz, and J.Rosen, J. Appl. Opt., 48, No. 34, H120 (2009).

    Article  ADS  Google Scholar 

  9. K. Svoboda and R.Yasuda, Neuron, 50, 823 (2006).

    Article  Google Scholar 

  10. S.T. Hess, T. P.K. Girirajan, and M.D.Mason, Biophys. J., 91, 4258 (2006).

    Article  ADS  Google Scholar 

  11. J. Folling, M. Bossi, H.Bock, et al., Nature Methods, 5, 943 (2008).

    Article  Google Scholar 

  12. B. Huang, W.Q.Wang, M.Bates, and X. W. Zhuang, Science, 319, 810 (2008).

    Article  ADS  Google Scholar 

  13. S. Cox, E. Rosten, J.Monypenny, et al., Nature Methods, 9, No. 2, 195 (2012).

    Article  Google Scholar 

  14. M.Paredes, J.C. Etzler, L.T.Watts, et al., Methods, 46, 143 (2008).

    Article  Google Scholar 

  15. E. V. Mitroshina, Optical Imaging in Applications to Studies of Neurobiological Systems of the Brain [in Russian], N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (2012).

    Google Scholar 

  16. R. J.Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New York (1971).

    Google Scholar 

  17. T. Colomb, Numerical Aberrations Compensation and Polarization Imaging in Digital Holographic Microscopy, EPFL, Lausanne (2006).

    Google Scholar 

  18. A. I. Rybnikov, V.V.Dudenkova, M. S.Murav’eva, and Yu.N. Zakharov, J. Opt. Technol., 80, No. 7, 457 (2013).

    Article  Google Scholar 

  19. I. Alexeenko, M.Gusev, and V.Gurevich, Appl. Opt., 48, No. 18, 3475 (2009).

    Article  ADS  Google Scholar 

  20. Yu.N. Zakharov, E.V.Mitroshina, M.V.Vedunova, et al., J. Opt. Technol., 79, No. 6, 348 (2012).

    Article  Google Scholar 

  21. E.V.Mitroshina, M.V.Vedunova, O.M. Shirokova, et al., Vestn. Nizhny Novgorod Univ., No. 2. (2), 283 (2011).

  22. Yu.N. Zakharov, E.V.Mitroshina, O.M. Shirokova, and I.V.Mukhina, in: B.Goldengorin, ed., Springer Proceedings in Mathematics and Statistics. Vol. 32, Models, Algorithms, and Technologies for Network Analysis, Springer, New York, 225 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Murav’eva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 8–9, pp. 646–653, August–September 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murav’eva, M.S., Dudenkova, V.V., I.Rybnikov, A. et al. Parallel Monitoring of Living Cell Cultures by Means of Digital-Holography and Fluorescent Microscopy. Radiophys Quantum El 57, 577–583 (2015). https://doi.org/10.1007/s11141-015-9541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9541-1

Keywords

Navigation