Skip to main content

Cell Volume Regulation Monitored with Combined Epifluorescence and Digital Holographic Microscopy

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Quantitative phase imaging emerged recently as a valuable tool for cell observation, by enabling label-free imaging through the intrinsic phase-contrast provided by transparent living cells , thus greatly simplifying observation protocols. The quantitative phase signal , unlike the one provided by the widely used phase-contrast microscope , can be related to relevant biological indicators including dry mass , cell volume regulation or transmembrane water movements . Here, we present quantitative phase imaging coupled with live fluorescence , making it possible to follow the phase signal in time to monitor the cell volume regulation , an early indicator of cell viability , along with specific information such as intracellular Ca2+ imaging with Fura-2 ratiometric fluorescence .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zernike F (1955) How I discovered phase contrast. Science 121:345–349

    Article  CAS  PubMed  Google Scholar 

  2. Allen R, David G, Nomarski G (1969) The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk 69:193–221

    CAS  PubMed  Google Scholar 

  3. Rappaz B, Marquet P, Cuche E et al (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13:9361–9373

    Article  PubMed  Google Scholar 

  4. Girshovitz P, Shaked NT (2012) Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed Opt Express 3:1757–1773

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rappaz B, Cano E, Colomb T et al (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14:034049

    Article  PubMed  Google Scholar 

  6. Mir M, Wang Z, Shen Z et al (2011) Optical measurement of cycle-dependent cell growth. Proc Natl Acad Sci U S A 108:13124–13129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pavillon N, Kühn J, Moratal C et al (2012) Early cell death detection with digital holographic nicroscopy. PLoS ONE 7:e30912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Khmaladze A, Matz RL, Epstein T et al (2012) Cell volume changes during apoptosis monitored in real time using digital holographic microscopy. J Struct Biol 178:270–278

    Article  PubMed  Google Scholar 

  9. Pavillon N, Benke A, Boss D et al (2010) Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy. J Biophotonics 3:432–436

    Article  CAS  PubMed  Google Scholar 

  10. Grynkiewicz G, Poenie M, Tsien R (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  11. Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253

    Article  CAS  PubMed  Google Scholar 

  12. Kreis T (2005) Handbook of holographic interferometry. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  13. Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw-Hill, New York, NY

    Google Scholar 

  14. Magistretti P, Marquet P, Depeursinge C (2013) Neural cell dynamics explored with digital holographic microscopy. Annu Rev Biomed Eng 15:407–431

    Article  PubMed  Google Scholar 

  15. Cuche E, Marquet P, Depeursinge C (1999) Simultaneous amplitude–contrast and quantitative phase–contrast microscopy by numerical reconstruction of Fresnel off–axis holograms. Appl Opt 38:6994–7001

    Article  CAS  PubMed  Google Scholar 

  16. Marquet P, Rappaz B, Magistretti P et al (2005) Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30:468–470

    Article  PubMed  Google Scholar 

  17. Montfort F, Charrière F, Colomb T et al (2006) Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: Influence of digital phase mask position. J Opt Soc Am A 23:2944–2953

    Article  Google Scholar 

  18. Colomb T, Kühn J, Charrière F et al (2006) Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt Express 14:4300–4306

    Article  PubMed  Google Scholar 

  19. Jourdain P, Pavillon N, Moratal C et al (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the co-transporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31:11846–11854

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann E, Lambert I, Pedersen S (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  21. Chen M, Sepramaniam S, Armugam A et al (2008) Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 6:102–116

    Article  CAS  Google Scholar 

  22. Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  CAS  PubMed  Google Scholar 

  23. Pavillon N (2011) Cellular dynamics and three-dimensional refractive index distribution studied with quantitative phase imaging. Ph.D. thesis no 5100, Ecole Polytechnique Fédérale de Lausanne

    Google Scholar 

  24. Stout A, Raphael H, Kanterewicz B et al (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373

    Article  CAS  PubMed  Google Scholar 

  25. Colomb T, Montfort F, Kühn J et al (2006) Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J Opt Soc Am A 23:3177–3190

    Article  Google Scholar 

  26. Langehanenberg P, Kemper B, Dirksen D et al (2008) Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Opt 47:D176–D182

    Article  PubMed  Google Scholar 

  27. Takajo H, Takahashi T (1988) Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference. J Opt Soc Am A 5:1818–1827

    Article  Google Scholar 

  28. Su X, Chen W (2004) Reliability-guided phase unwrapping algorithm: a review. Optic Laser Eng 42:245–261

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation grant #CR32I3-132993 and by the Commission for Technology and Innovation (CTI/KTI) project #9389.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Pavillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pavillon, N., Marquet, P. (2015). Cell Volume Regulation Monitored with Combined Epifluorescence and Digital Holographic Microscopy. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics