Skip to main content
Log in

Study of the Evolution of the Electric Structure of a Convective Cloud Using the Data of a Numerical Nonstationary Three-Dimensional Model

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Morozov, Mathematical Simulation of Atmospheric-Electric Processes with Allowance for the Influence of Aerosol Particles and Radioactive Materials [in Russian], Russia State Hydrometeorological University, St.Petersburg (2011), p. 254.

    Google Scholar 

  2. I. M. Imyanitov and L. V. Kashleva, Atmospheric Electricity. Proc. III All-Union Symp., Tartu, Oct. 28–31, 1986, Gidrometeoizdat, Leningrad (1988), p. 98.

    Google Scholar 

  3. B. A. Ashabokov, D. D.Kuliev, K. A. Prodan, et al., Proc. VII All-Russia Conf. Atmos. Electric., St.Petersburg, Sept. 24–28, 2012, p. 31.

  4. E. R. Williams, Scientific American, 259, No. 5, 48 (1988).

    Article  Google Scholar 

  5. L. V. Kashleva, Atmospheric Electricity [in Russian], St. Petersburg, (2008), p. 116.

  6. S. P. Girs and Yu. A. Dovgalyuk, On the Mechanisms of Cloud Drop Charging in Warm Cloud [in Russian], All-Russia Research Institute of Hydrometeorological Information–World Data Center Report, ser. Meteorology, Obninsk (1975).

    Google Scholar 

  7. N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity [in Russian], Gidrometeoizdat, Leningrad (1964).

    Google Scholar 

  8. B. A. Ashabokov, L. M. Fedchenko, V. O.Tapaskhanov, et al., Physics of Hail Clouds and Active Influence on the Latter: State and Development Directions [in Russian], Nal’chik (2013).

  9. É. L. Potashnik and A.D. Kuznetsov, Mathematical Simulation of the Cloud Processes. Textbook [in Russian], Russia State Hydrometeorological University, St.Petersburg (2010).

    Google Scholar 

  10. I.M. Imyanitov, E.V. Chubarina, and Ya.M. Shvarts, Cloud Electricity [in Russian], Gidrometeoizdat, Leningrad (1971).

    Google Scholar 

  11. Yu.A.Dovgalyuk, N.E.Veremey, and A.A. Sin’kevich, Use of One-and-a-Half–Dimensional Model for Solving Fundamental and Applied Problems of the Physics of Clouds [in Russian], Asterion, St.Petersburg (2007).

    Google Scholar 

  12. V. A. Pachin, Preliminary Results of Numerical Experiments on Simulation of Convective-Cloud Electrization [in Russian], Proc. Sci.-Research Center Remote Atmos. Sounding (Main Geophysical Observatory Branch), No. 4 (552), 55 (2002).

  13. V. G. Baranov, Features of Forming an Electric Structure of a Convective Thunderstorm Cloud Using the Data of Numerical Nonstationary Model [in Russian], Abstract Cand. Sci. (Phys.-Math.) Thesis, Leningrad (1990), p. 14

    Google Scholar 

  14. E.R.Mansell, D.R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res., 110, D12101 (2005).

    Article  ADS  Google Scholar 

  15. O. Altaratz, T.Reisin, and Z. Levin, J. Geophys. Res., 110, D20205 (2005).

    Article  ADS  Google Scholar 

  16. C. Barthe, G.Molinie, and J.-P.Pinty, Atmos. Res., 76, 95 (2005).

    Article  Google Scholar 

  17. V. N. Morozov, N. E.Veremey, and Yu. A. Dovgalyuk, Trudy Glav. Geofiz. Obs., No. 559, 134 (2009).

  18. Yu.A.Dovgalyuk, N. E.Veremey, S. A. Vladimirov, et al., Trudy Glav. Geofiz. Obs., No. 558, 102 (2008).

  19. N.E.Veremey, Yu.A.Dovgalyuk, and E.N. Stankova, Izv. Atmos. Ocean Phys, 43, No. 6, 731 (2007).

    Article  Google Scholar 

  20. N.E.Veremey, Yu.A.Dovgalyuk, and V.N.Morozov, Meteorol. Gidrol., No. 11, 5 (2006).

  21. N.E.Veremey, Yu.A.Dovgalyuk, and V.N.Morozov, Russian Meteorol. Hydrol., 32, No. 10, 634 (2007).

    Article  Google Scholar 

  22. Yu.A.Dovgalyuk, N. E.Veremey, S. A. Vladimirov, et al., Trudy Glav. Geofiz. Obs., No. 562, 7 (2010).

  23. V. N. Morozov, Proc. Sci.-Research Center Remote Atmos. Sounding (Main Geophysical Observatory Branch) [in Russian], No. 7 (555), 35 (2006).

  24. M. K.Yau and R.Michaud, J. Atmos. Sci., 39, 1062 (1982).

    ADS  Google Scholar 

  25. R. W. MacCormack, Am. Inst. Aeronaut. Astronaut., 354, 69 (1969).

    Google Scholar 

  26. A. A. Sin’kevich, Convective Clouds of the Russia North–West Region [in Russian], Gidrometeoizdat, St.Petersburg (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Veremey.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 11–12, pp. 889–899, November–December 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veremey, N.E., Dovgalyuk, Y.A., Zatevakhin, M.A. et al. Study of the Evolution of the Electric Structure of a Convective Cloud Using the Data of a Numerical Nonstationary Three-Dimensional Model. Radiophys Quantum El 56, 801–810 (2014). https://doi.org/10.1007/s11141-014-9482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9482-0

Keywords

Navigation