Skip to main content
Log in

Influence of the Aerosol-Size Spread on Dissipative Instability of Aerosol Flows in the Planetary Atmospheres. II. Atmospheres of Mars and Titan

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The results on the aerosol-size spread influence on dissipative instability of aerosol flow in a cold weakly ionized collisional plasma, which were obtained in the first part of this paper [1], are used for the Mars (altitudes 70–100 km) and Titan (altitudes 900–1200 km) atmospheric conditions. The threshold charges and characteristic space–time instability scales are quantitatively estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Grach, Radiophys. Quantum Electron., 56, No. 6, ??(2013).

  2. V.Yu.Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, No. 3, 584 (1989).

    Google Scholar 

  3. N. N. Rao, P.K. Shukla, and M. Y.Yu, Planet. Space Sci., 38, 543 (1990).

    Article  ADS  Google Scholar 

  4. V. E. Fortov, A.G.Khrapak, and S.A. Khrapak, Phys. Usp., 47, No. 5, 447 (2004).

    Article  ADS  Google Scholar 

  5. V.E. Fortov and G.Morfill, eds., Complex and Dust Plasma. From Laboratory to Space, CRC Press, Boca Raton (2012).

    Google Scholar 

  6. V.Yu.Trakhtengerts, J. Atmosph. Terr. Phys., 56, No. 3, 337 (1994).

    Article  ADS  Google Scholar 

  7. V. N.Tsytovich and O. Havnes, Amer. Inst. Phys. Conf. Ser., 649, 454 (2002).

    ADS  Google Scholar 

  8. V. S. Grach, A. G. Demekhov, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 48, No. 6, 435 (2005).

    Article  ADS  Google Scholar 

  9. V. S. Grach, A. G.Demekhov, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 49, No. 11, 851 (2006).

    Article  ADS  Google Scholar 

  10. V. S. Grach, Radiophys. Quantum Electron., 52, No. 12, 854 (2009).

    Article  ADS  Google Scholar 

  11. G. Joyce, M. Lampe, and G.Ganguli, Phys. Rev. Lett., 88, No. 9, 095006 (2002).

    Article  ADS  Google Scholar 

  12. A.A.Mamun and P. K. Shukla, Phys. Plasmas, 7, 4412 (2000).

    Article  ADS  Google Scholar 

  13. V.E. Fortov, A.G.Khrapak, S.A.Khrapak, et al., Phys. Plasmas., 7, 1374 (2000).

    Article  ADS  Google Scholar 

  14. S. I. Kopnin, S. I., Popel, and M.Y.Yu, Phys. Plasmas, 16, No. 6, 063705 (2009).

  15. A.Yu.Dubinskii and S. I., Popel, JETP Lett., 96, 21 (2012).

    Google Scholar 

  16. P. Lavvas, R.V.Yelle, and C. A. Griffith, Icarus, 210, 832 (2010).

    Article  ADS  Google Scholar 

  17. P. Lavvas, C.A.Griffith, and R.V.Yelle, Icarus, 215, No. 2, 732 (2011).

    Article  ADS  Google Scholar 

  18. P. Lavvas, R.V.Yelle, T.Koskinen, et al., Proc. Natl. Acad. Sci. USA, 110, No. 8, 2729 (2013).

    Article  ADS  Google Scholar 

  19. M. J.Wolff, M.D. Smith, R.T.Clancy, et al., J. Geophys. Res. E (Planets), 111, No. 10, 12 (2006).

  20. D. J. McCleese, N. G. Heavens, J.T. Schofield, et al., J. Geophys. Res. E (Planets), 116, No. 1, 1010 (2011).

    Google Scholar 

  21. N. G. Heavens, D. J.McCleese, M. I. Richardson, et al., J. Geophys. Res. E (Planets), 116, No. 1, 1010 (2011).

    Google Scholar 

  22. H. Nair, M. Allen, A. D. Anbar, et al., Icarus, 111, No. 1, 124 (1994).

    Article  ADS  Google Scholar 

  23. V. A.Krasnopolsky, Icarus, 185, No. 1, 153 (2006).

    Article  ADS  Google Scholar 

  24. A. V. Gurevich and A.B. Shvartsburg, Nonlinear Theory of Radio-Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  25. S. I. Akasofu and S.Chapman, Solar-Terrestrial Physics, Clarendon Press, Oxford (1972).

    Google Scholar 

  26. R. de Kok, P. G. J. Irwin, N. A.Teanby, et al., Icarus, 191, No. 1, 223 (2007).

    Article  ADS  Google Scholar 

  27. C. M. Anderson, R. E. Samuelson, G. L.Bjoraker, and R.K.Achterberg, Icarus, 207, No. 2, 914 (2010).

    Article  ADS  Google Scholar 

  28. C. M. Anderson and R.E. Samuelson, Icarus, 212, No. 2, 762 (2012).

    Article  ADS  Google Scholar 

  29. M. Michael, S. N.Tripathi, P.Arya, et al., Planet. Space Sci., 59, 880 (2011).

    Article  ADS  Google Scholar 

  30. M. Fulchignoni, F. Ferri, F.Angrilli, et al., Nature, 438, No. 7069, 785 (2005).

    Article  ADS  Google Scholar 

  31. R. V.Yelle, N.Borggren, V. de La Haye, et al., Icarus, 182, No. 2, 567 (2006).

    Article  ADS  Google Scholar 

  32. K. E.Mandt, D.A.Gell, M. Perry, et al., J. Geophys. Res. E (Planets), 117, No. 16, 10006 (2012).

  33. V. S. Grach, V. E. Semenov, and V.Yu.Trakhtengerts, Plasma Phys. Rep., . 35, No. 1, 31 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Grach.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, No. 7, pp. 468–479, July 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grach, V.S. Influence of the Aerosol-Size Spread on Dissipative Instability of Aerosol Flows in the Planetary Atmospheres. II. Atmospheres of Mars and Titan. Radiophys Quantum El 56, 422–432 (2013). https://doi.org/10.1007/s11141-013-9445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9445-x

Keywords

Navigation