Skip to main content
Log in

A new method for acoustic characterization of particulate materials: preliminary results

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe a new method of measuring acoustic properties of particulate (unconsolidated) materials and present preliminary results of its application to studying artificial granular media. The results demonstrate promising prospects for the new method. Earlier unknown features of a dynamic response of unconsolidated granular medium are revealed. Experimental observations of slow relaxation in such media are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Gol’dshtein, Mechanical Properties of Soils [in Russian], Izd. Lit. Stroit., Moscow (1971).

    Google Scholar 

  2. E. A. Voznesensky, Behavior of Soils under Dynamic Loading [in Russian], Moscow State Univ., Moscow (1997).

    Google Scholar 

  3. O. V. Pavlenko, Seismic Waves in Layered Soils: Nonlinear Behavior of Soil in Response to Strong Earthquakes of Recent Years [in Russian], Nuchnyi Mir, Moscow (2009).

    Google Scholar 

  4. H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Phys. Today, 49, No. 4, 32 (1996).

    Article  Google Scholar 

  5. S. Richter and G. Huber, Granular Matter, 5, 121 (2003).

    Article  Google Scholar 

  6. S. Richter and G. Huber, Granular Matter, 6, 195 (2004).

    Google Scholar 

  7. V. S. Averbakh, A. V. Lebedev, A. P. Maryshev, and V. I. Talanov, Acoust. Phys., 55, No. 2, 211 (2009).

    Article  ADS  Google Scholar 

  8. A. L. Groshkov, R. R. Kalimulin, and G. M. Shalashov, Dokl. Akad. Nauk SSSR, 308, No. 1, 65 (1989).

    Google Scholar 

  9. R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete, Wiley-VCH, New York (2009).

    Book  Google Scholar 

  10. T. Brunet, X. Jia, and P. A. Johnson, Geophys. Res. Lett., 35, L19308 (2008).

    Article  ADS  Google Scholar 

  11. I. A. Beresnev and P. A. Johnson, Geophysics 59, No. 6, 1000 (1994).

    Article  ADS  Google Scholar 

  12. V. N. Nikitin, Fundamentals of Engineering Seismics [in Russian], Moscow State Univ., Moscow (1981).

    Google Scholar 

  13. V. S. Averbakh, A. V. Lebedev, S. A. Manakov, and V. I. Talanov, Acoust. Phys., 58, No. 5, 596 (2012).

    Article  ADS  Google Scholar 

  14. C. B. Park, R. D. Miller, and J. Xia, Geophysics, 64, No. 3, 800 (1999)

    Article  ADS  Google Scholar 

  15. A. I. Kon’kov, A. V. Lebedev, and S. A. Manakov, in: Proc. 25th Session of the Russian Acoust. Soc. [in Russian] (2012), vol. 1, p. 332.

  16. V. S. Averbakh, A. V. Lebedev, A. P. Maryshev, and V. I. Talanov, Acoust. Phys., 54, No. 4, 526 (2008).

    Article  ADS  Google Scholar 

  17. R. E. Sheriff and L. P. Geldart, Exploration Seismology, Volume 1, History, Theory, and Data Acquisition, Cambridge Univ. Press, New York (2008).

    Google Scholar 

  18. Öz. Yilmas, Seismic Data Analysis. Soc. Expl. Geophys., Tulsa (2001).

  19. K. Terzaghi, Terzaghi Lectures: 1974–1982, Am. Soc. Civil Eng., New York (1986).

  20. M. H. Safar, Geophys. Prospecting, 32, 392 (1984).

    Article  ADS  Google Scholar 

  21. J. E. White, Seismic Waves: Radiation, Transmission, and Attenuation, McGraw-Hill, New York (1965).

    Google Scholar 

  22. A. V. Lebedev, V. V. Bredikhin, I. A. Soustova, et al., J. Geophys. Res. B, 108, No. 10, EPM11 (2003).

    Google Scholar 

  23. A. V. Lebedev, V. V. Bredikhin, and I. A. Soustova, in: Proc. of Seminars of the Scientific School of Prof. S.A. Rybak, [in Russian], Russian Acoust. Soc., Moscow (2003), p. 77.

  24. M. F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford (1999).

    Google Scholar 

  25. A. W. Leissa, Vibration of Shells, Am. Inst. Phys., Woodbury, N.Y. (1993).

  26. E. H. Kennard, J. Appl. Mech., 3, 33 (1953).

    MathSciNet  Google Scholar 

  27. I. N. Sneddon and D. S. Berry, “The classical theory of elasticity,” in: S.Flugge, ed., Encycl. Phys., Vol. VI, Elasticity and Plasticity, Springer-Verlag, Berlin–Heidelberg (1958).

  28. I. M. Babakov, Theory of Oscillations [in Russian], Gostekhizdat, Moscow (1958).

    Google Scholar 

  29. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge Univ. Press, New York (2009).

    Book  Google Scholar 

  30. A. V. Lebedev, Acoust. Phys., 48, No. 3, 339 (2002).

    Article  ADS  Google Scholar 

  31. N. S. Cheng, Ind. Eng. Chem. Res., 47, 3285 (2008).

    Article  Google Scholar 

  32. L. P. Kadanoff, Rev. Mod. Phys., 71, No. 1, 435 (1999).

    Article  ADS  Google Scholar 

  33. W. F. Murphy, “Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials,” PhD Thesis, Standford University (1982).

  34. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York (1992).

    Google Scholar 

  35. N. B. Ur’ev, Physico-Chemical Fundamentals of Technologies of Dispersed Systems and Materials [in Russian], Khimiya, Moscow (1988).

    Google Scholar 

  36. K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge (1974).

    Google Scholar 

  37. S. R. Pride and J. G. Berryman, Acta Mech., 205, 185 (2009).

    Article  MATH  Google Scholar 

  38. X. Jia and P. Mills, Powders and Grains, Balkema, Rotterdam (2001), p. 105.

  39. E. Guyon and D. Bideau, Instabilities and Nonequilibrium Structures, Kluwer, Dordrecht (2000), p. 315.

    Book  Google Scholar 

  40. http://inoteck.net.

  41. C. Song, P. Wang, and H. A. Makse, Nature, 453, No. 7195, 629 (2008).

    Article  ADS  Google Scholar 

  42. L. D. Landau and E. M. Lifshitz, Mechanics, Vol. 1 (Course of Theoretical Physics), Butterworth-Heinemann, Oxford (1976).

  43. L. A. Ostrovsky and P. A. Johnson, Riv. Nuovo Cim., 24, No. 7, 1 (2001).

    Google Scholar 

  44. I. Yu. Belyaeva, V. Yu. Zaitsev, and E. M. Timanin, Acoust. Phys., 40, No. 6, 789 (1994).

    ADS  Google Scholar 

  45. D. Pasqualini, K. Heitmann, J. A. TenCate, et al., J. Geophys. Res., 112, B01204 (2007).

    Article  ADS  Google Scholar 

  46. V. S. Averbakh, V. V. Bredikhin, A. V. Lebedev, and S. A. Manakov, Acoust. Phys., 56, No. 6, 794 (2010).

    Article  ADS  Google Scholar 

  47. L. A. Ostrovsky and A. V. Lebedev, in: Proc. 19th Int. Symp. Nonlinear Acoustics, Waseda Univ., Tokyo (2012), p. 62.

  48. P. A. Rebinder, Physico-Chemical Mechanics: A New Branch of Science [in Russian], Znanie, Moscow (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Averbakh.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 3, pp. 149–172, March 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averbakh, V.S., Lebedev, A.V., Manakov, S.A. et al. A new method for acoustic characterization of particulate materials: preliminary results. Radiophys Quantum El 56, 135–156 (2013). https://doi.org/10.1007/s11141-013-9422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9422-4

Keywords

Navigation