Skip to main content
Log in

Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth’s surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant “monopole” loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range \( V_{\omega}^2\approx \left( {2-4} \right)\cdot {10^{-12 }}-{10^{-13 }}\;{V^2}\cdot H{z^{-1 }} \) and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the “cold” plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A.Mareev and Yu.V. Chugunov, Antennas in Plasma, Inst. Appl. Phys., Nizhny Novgorod (1991).

    Google Scholar 

  2. A.A.Andronov and Yu.V. Chugunov, Uspekhi Fiz. Nauk, 116, No. 1, 79 (1975).

    Article  ADS  Google Scholar 

  3. A. G. Demekhov, V.Yu.Trakhtengerts, M.M.Mogilevsky, and L. M. Zelenyi, Adv. Space Res., 32, No. 3, 355 (2003).

    Article  ADS  Google Scholar 

  4. http://mertensiana.phys.ucalgary.ca/index.html .

  5. D. Bilitza, Adv. Space Res., 31, 757 (2003).

    Article  ADS  Google Scholar 

  6. V.Yu.Trakhtengerts and Yu.V. Chugunov, Space Research [in Russian], 16, No. 2, 238 (1978).

    Google Scholar 

  7. T.V. Efimova and Yu.V. Chugunov,Geomagn. Aéron., 21, No. 1, 50 1981.

    ADS  Google Scholar 

  8. N.Meyer-Vernet, Geophys. Res. Lett., 21, 397 (1996).

    Article  ADS  Google Scholar 

  9. K. Issautier, N. Meyer-Vernet, M.Moncuquet, and S. Hoang, Geophys. Res. Lett., 23, 1649 (1996).

    Article  ADS  Google Scholar 

  10. K. Issautier, N. Meyer-Vernet, M.Moncuquet, and S. Hoang, J. Geophys. Res., 103, 1969 (1998).

    Article  ADS  Google Scholar 

  11. Yu.V.Chugunov, V.Fiala, J. Soucek, and O. Santolik, Adv. Space Res., 37, No. 8, 1538 (2006).

    Article  ADS  Google Scholar 

  12. N. Meyer-Vernet, S.Hoang, and M.Moncuquet, J. Geophys. Res., 98, 21163 (1993).

    Article  ADS  Google Scholar 

  13. Yu.V.Chugunov, A.Yu.Kazarova, E. A. Mareev, et al., Astrophys. Space Sci., 277, ,3131 (2001).

    Article  Google Scholar 

  14. Yu.V. Chugunov and E.A. Mareev, Radio Sci., 36, No. 5, 1083 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Chugunov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 2, pp. 67–84, February 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chugunov, Y.V., Grach, V.S. & Pasmanik, D.L. Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band. Radiophys Quantum El 56, 61–77 (2013). https://doi.org/10.1007/s11141-013-9416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9416-2

Keywords

Navigation