Skip to main content
Log in

Electron acoustic rogue waves in Earth’s magnetosphere

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The characteristics of electron acoustic (EA) rogue waves (RWs), triplet rogue waves (TRWs) and super rogue waves (SRWs) in a multicomponent beam plasma composed of cold electrons fluid, inertialess superthermal hot electrons and stationary ions in background embedded with an electron beam have been examined. The multiple scale perturbation method is employed to derive the nonlinear Schrödinger equation (NLSE) to analyse the EA rogue waves. From the solutions of NLSE the properties of different types of EA RWs have been analysed. The characteristics of EA RWs are strongly influenced by the electron beam and other plasma parameters. The findings of this work may be useful to examine the formation of EA nonlinear structures in the space and astrophysical plasma environments especially in Earth’s magnetospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

Download references

Acknowledgements

RK has presented a part of this paper in two days Conference on ‘Chandra’s Contribution in Plasma Astrophysics’ on the 111th Birth Ceremony of Prof. S. Chandrasekhar held during 19–20 October 2021 in School of Physical Sciences, JNU, New Delhi. NSS gratefully acknowledges the support for this research work from Department of Science and Technology, Government of India, New Delhi under DST-SERB project no. CRG/2019/003988. KS gratefully acknowledges the financial support from Khalifa University of Science & Technology, Abu Dhabi, UAE via the (internal funding) project FSU2021-012/8474000352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Saini.

Additional information

This article is part of the Special Issue on “Waves, Instabilities and Structure Formation in Plasmas”.

Appendix

Appendix

$$\begin{aligned} T_{1}&=\omega ^{2}j^{2}-\omega ^{2}n_{\mathrm{bc}}k C_{1}+ \omega ^{2}n_{\mathrm{bc}}j C_{2}-k j^{2}C_{3}-\omega j^{2}C_{4},\\ T_{2}&=\frac{2\omega ^{2} n_{\mathrm{bc}} k^{2}}{j}-\frac{k^{2}j^{2}}{\omega }-\frac{\omega j^{2}k^{2}}{\omega ^{2}},\\ T_{3}&=3\omega ^{2}j^{2} n_{\mathrm{hc}}m_{3}-\omega ^{2} n_{\mathrm{bc}}k C_{5}+\omega ^{2}n_{\mathrm{bc}}j C_{6}-kj^{2}C_{7}, \end{aligned}$$

here

$$\begin{aligned} C_{1}&=\frac{(V_{\mathrm{g}}-V_{\mathrm{b}})(k V_{\mathrm{g}}-\omega )}{j^{2}},\\ C_{2}&=\frac{(V_{\mathrm{g}}-V_{\mathrm{b}})(2k\omega -2 k^{2} V_{\mathrm{g}})}{j^{2}}-\frac{(kV_{\mathrm{g}}-\omega )}{j^{2}},\\ C_{3}&=\frac{-V_{\mathrm{g}}(-k V_{\mathrm{g}}+\omega )}{\omega ^{2}},\\ C_{4}&=\frac{2 k^{2} V_{\mathrm{g}}^{2}-2k\omega V_{\mathrm{g}}}{\omega ^{3}}+\frac{(-kV_{\mathrm{g}}+\omega )}{\omega ^{2}},\\ C_{5}&=\frac{3k^{5}}{2 j^{4}}-\frac{3k^3P_{1}}{j^2 P_{2}}-\frac{k^4}{2 j^3 (V_{\mathrm{g}}-V_{\mathrm{b}})}+\frac{k^2 P_{3}}{P_{4} j(V_{\mathrm{g}}-V_{\mathrm{b}})},\\ C_{6}&=\frac{5k^5}{2j^4 (V_{\mathrm{g}}-V_{\mathrm{b}})}-\frac{k^3 P_{3}}{P_{4}j^2 (V_{\mathrm{g}}-V_{\mathrm{b}})}\\&\quad -\frac{4k^6}{2j^5}+\frac{2k^4 P_{1}}{j^3P_{2}}-\frac{k^4}{2j^3(V_{\mathrm{g}}-V_{\mathrm{b}})^{2}}+\frac{k^2 P_{3}}{P_{4}(V_{\mathrm{g}}-V_{\mathrm{b}})^{2}}j,\\ C_{7}&=\frac{3k^{5}}{2 j^{4}}-\frac{3k^3P_{1}}{\omega ^2 P_{2}}-\frac{k^4}{2 \omega ^3 V_{\mathrm{g}}}-\frac{k^2 P_{3}}{P_{4} \omega V_{\mathrm{g}}},\\ C_{8}&=\frac{5k^5}{2\omega ^4 V_{\mathrm{g}}}-\frac{k^3 P_{3}}{P_{4}\omega ^2 V_{\mathrm{g}}}+\frac{4k^6}{2\omega ^5}-\frac{2k^4 P_{1}}{\omega ^3 P_{2}}\\&\quad +\frac{k^4}{2\omega ^3 V_{\mathrm{g}}^{2}}-\frac{k^2 P_{3}}{P_{4} V_{\mathrm{g}}^{2}\omega },\\ P_{1}&=\frac{3k^4}{2\omega ^4}+\frac{3 n_{\mathrm{bc}}k^4}{2 j^4}+n_{\mathrm{hc}}m_{2},\\ P_{2}&=\frac{k^2}{\omega ^2}+\frac{n_{\mathrm{bc}}k^2}{j^2}-4k^2+n_{\mathrm{hc}}m_{1},\\ P_{3}&=\frac{k^2}{2\omega ^2 V_{\mathrm{g}}^2}+\frac{2k^3}{\omega ^3 V_{\mathrm{g}}}\\&\quad +n_{\mathrm{bc}}\left( \frac{k^2}{2j^2(V_{\mathrm{g}}-V_{\mathrm{b}})^{2}}-\frac{2k^3}{j^3(V_{\mathrm{g}}-V_{\mathrm{b}})}+2 n_{\mathrm{hc}}m_{2}\right) ,\\ P_{4}&=\frac{1}{V_{\mathrm{g}}^{2}}+\frac{n_{\mathrm{bc}}}{(V_{\mathrm{g}}-V_{\mathrm{b}})^{2}}+n_{\mathrm{hc}}m_{1}, \end{aligned}$$

where

$$\begin{aligned} j&=(-\omega +V_{\mathrm{b}}k)^{2}, \quad m_{1}=\frac{-\kappa +\frac{1}{2}}{\kappa -\frac{3}{2}},\\ m_{2}&=\frac{(-\kappa +\frac{1}{2})(\kappa +\frac{1}{2})}{2(\kappa -\frac{3}{2})^{2}},\,m_{3}=\frac{(-\kappa +\frac{1}{2})(\kappa +\frac{1}{2})(\kappa +\frac{3}{2})}{6(\kappa -\frac{3}{2})^{3}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Singh, K. & Saini, N.S. Electron acoustic rogue waves in Earth’s magnetosphere. J Astrophys Astron 43, 62 (2022). https://doi.org/10.1007/s12036-022-09843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09843-6

Keywords

Navigation