Skip to main content
Log in

Laboratory Modeling of the Nonstationary Electron Beam Interaction with Magnetized Plasma

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of experimental study of the mechanisms of interaction of nonstationary electron beams with magnetized plasma under conditions where typical durations τ of electon bunches satisfy the relation f LH ≪ 1/τ < f c < f p, where f LH is the lower-hybrid frequency, f c is the electron-cyclotron frequency, and f p is the plasma frequency. It is demonstrated that the electromagnetic responses occurring in the magnetized plasma due to the intrusion of such beams are transported by whistler-mode waves. It is shown that these responses are of different nature. Namely, the transition radiation occurring in the vicinity of the point of injection of the pulsed beam into the plasma is a packet of quasi-longitudinal whistler-mode waves, while the electromagnetic response excited in a rarefied plasma is due to the Čerenkov resonance with the pulsed beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lavergnat, Artificial Particle Beams in Space Plasmas Studies. The French-Soviet Experiment ARAKS: Main Results, Plenum, New York (1982).

    Google Scholar 

  2. M. Dobrowolny and E. Melchioni, J. Geophys. Res., 98, 13761 (1993).

    Article  ADS  Google Scholar 

  3. R. L. Stenzel and J. M. Urrutia, J. Geophys. Res., 95, 6209 (1990).

    Article  ADS  Google Scholar 

  4. R. L. Stenzel and J. M. Urrutia, Phys. Plasmas, 4, 26 (1997).

    Article  ADS  Google Scholar 

  5. E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE. Trans. Plasma Sci., 24, 252 (1996).

    Article  ADS  Google Scholar 

  6. C. Labaune, W. J. Hogan, and K. A. Tanaka, eds., Inertial Fusion Science and Applications, Elsevier, New York, Amsterdam (1999).

    Google Scholar 

  7. E. Neau, IEEE Trans. Plasma Sci., 22, 2 (1994).

    Article  ADS  Google Scholar 

  8. F. Wessel and S. Robertson, Phys. Fluids, 24, 739 (1981).

    Article  ADS  Google Scholar 

  9. K. Ware, P. Filios, R. Gullickson, et al., IEEE Trans. Plasma Sci., 25, 160 (1997).

    Article  ADS  Google Scholar 

  10. R. Boswell, I. Morey, and R. Porteous, J. Geophys. Res., 94, 2654 (1989).

    Article  ADS  Google Scholar 

  11. T. Neubert and P. Banks, Planet. Space Sci., 40, 153 (1992).

    Article  ADS  Google Scholar 

  12. R. Helliwell, in: Modern Radio Science, Oxford Univ. Press (1993), p. 189.

  13. D. Gurnett and L. Frank, J. Geophys. Res., 77, 172 (1972).

    Article  ADS  Google Scholar 

  14. E. Bering, J. Maggs, and H. Anderson, J. Geophys. Res., 92, 7581 (1987).

    Article  ADS  Google Scholar 

  15. M. Rycroft, Planet. Space Sci., 21, 239 (1973).

    Article  ADS  Google Scholar 

  16. Y. Omura, D. Nunn, H. Matsumoto, and M. Rycroft, J. Atmosp. Terr. Phys., 53, 351 (1991).

    Article  ADS  Google Scholar 

  17. J. Urrutia and R. Stenzel, Phys. Rev. Lett., 62, 272 (1989).

    Article  ADS  Google Scholar 

  18. J. Urrutia and R. Stenzel, Phys. Rev. Lett., 67, 1867 (1991).

    Article  ADS  Google Scholar 

  19. R. Stenzel, J. Urrutia, and C. Rousculp, IEEE. Trans. Plasma Sci., 20, 787 (1992).

    Article  ADS  Google Scholar 

  20. D. G. Bills, R.B. Holt, and B.T. McClure, J. Appl. Phys., 33, 29 (1962).

    Article  ADS  Google Scholar 

  21. M. Starodubtsev, C. Krafft, P. Thevenet, and A. Kostrov, Phys. Plasmas, 6, 1427 (1999).

    Article  ADS  Google Scholar 

  22. M. Starodubtsev and C. Krafft, Phys. Plasmas, 6, 2598 (1999).

    Article  ADS  Google Scholar 

  23. M. Starodubtsev, C. Krafft, and P. Thevenet, IEEE Trans. Plasma Sci., 28, 367 (2000).

    Article  ADS  Google Scholar 

  24. M. Starodubtsev and C. Krafft, J. Plasma Phys., 63, 285 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.V. Starodubtsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, Nos. 10–11, pp. 683–697, October–November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starodubtsev, M., Krafft, C. Laboratory Modeling of the Nonstationary Electron Beam Interaction with Magnetized Plasma. Radiophys Quantum El 55, 616–628 (2013). https://doi.org/10.1007/s11141-013-9399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9399-z

Keywords

Navigation