Skip to main content
Log in

The Existence and Propagation of Electron Acoustic Shock Waves in Magnetized Plasma with Electron Beam

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The existence and propagation of small amplitude nonlinear electron acoustic shock waves by taking into account the effects of electron beam in magnetized plasma are investigated by employing reductive perturbation method. The nonlinear Korteweg–de Vries–Burgers (KdVB) equation has been derived by considering the basic fluid equations and dissipation effects. The nonlinear coefficient of KdVB equation comes out to be negative. Only dip-shaped potential structures are reported here. It is observed that the beam parameters play an important role in describing the behaviour of electron acoustic shock waves. An increase in beam density results in increase in the amplitude of electron acoustic (EA) shock waves. Moreover, the dependence of the solution on obliqueness, magnetic field and kinematic viscosity is also investigated. The numerical analysis is presented for the parameters corresponding to the observation of burst b event by the Viking satellite in the dayside auroral zone of the Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.D. Fried, R.W. Gould, Phys. Fluids 4, 139 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Watanabe, T. Taniuti, Phys. Soc. Japan 43, 1819 (1977)

    Article  ADS  Google Scholar 

  3. N. Dubouloz, R. Pottelete, M. Malingre, R.A. Treumann, Geophys. Res. Lett. 18, 155 (1972)

    Article  ADS  Google Scholar 

  4. Y. Futaana, S. Machida, Y. Satio, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 15 (2003)

  5. S.S. Ruan, W.Y. Jin, S. Wu, Z. Cheng, Astrophys. Space Sci. 350, 523 (2014)

    Article  ADS  Google Scholar 

  6. J.A.S. Lima, R. Silva, J. Santos, Phys. Rev. E 61, 3260 (2000)

    Article  ADS  Google Scholar 

  7. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1958)

    Article  ADS  Google Scholar 

  8. E.E. Antonova, E.E. Ermakova, Adv. Space. Res. 42, 987 (2008)

  9. R.L. Mace, M.A. Helberg, Phys. Plasmas 43, 239 (1990)

    Article  Google Scholar 

  10. S.V. Singh, G.S. Lakhina, Planet. Space Sci. 49, 107 (2001)

    Article  ADS  Google Scholar 

  11. R.L. Mace, M.A. Helberg, Phys. Plasmas 8, 2649 (2001)

    Article  ADS  Google Scholar 

  12. S. Sultana, I. Kourakis, Eur. Phys. J D 66, 100 (2012)

    Article  ADS  Google Scholar 

  13. S. Bansal, M. Aggarwal, T.S. Gill, Braz. J. Phys. (2018) https://doi.org/10.1007/s13538-018-0602-8

  14. M. Berthomier, R. Pottelete, M. Malingre, Y. Khotyaintsev, Phys. Plasmas 7, 2987 (2000)

    Article  ADS  Google Scholar 

  15. B. Sahu, R. Roychoudhury, Phys. Plasmas 11, 1947 (2004)

    Article  ADS  Google Scholar 

  16. W.F. El-Taibany, J. Geophys. Res. Atm. (2005) https://doi.org/10.1029/2004JA010525

  17. S.A. Elwakil, M.A. Zahran, S. Shewy, Phys. Scr. 75, 803 (2007)

    Article  ADS  Google Scholar 

  18. S.S. Ghosh, J.S. Pickett, G.S. Lakhina, J.D. Winningham, B.P.M.E. Lavraud, B. Decreau, J. Geophys. Res. 113, A06218 (2008)

    ADS  Google Scholar 

  19. S. Devanandhan, S.V. Singh, G.S. Lakhina, R. Bharuthram, R.S. Pillay, Phys. Plasmas 19, 082314 (2011)

    Article  ADS  Google Scholar 

  20. S.V. Singh, G.S. Lakhina, R. Bharuthram, R.S. Pillay, Phys. Plasmas 18, 122306 (2011)

    Article  ADS  Google Scholar 

  21. S.V. Singh, S. Devanandhan, G.S. Lakhina, R. Bharuthram, Phys. Plasmas 23, 082310 (2016)

    Article  ADS  Google Scholar 

  22. A. Danekhar, Plasma Phys. Contr. Fus. 6, 160 (2018)

    Google Scholar 

  23. W. Moslem, S. Sabry, Chaos. Solitons and Fractals 36, 3 (2008)

    Article  Google Scholar 

  24. T.S. Gill, A. Bains, C. Bedi, J. Phys. Conf. Ser. 208, 012040 (2010)

    Article  Google Scholar 

  25. K. Javidan, H.R. Pakzad, Indian J. Phys. 87, 83 (2012)

    Article  ADS  Google Scholar 

  26. A.P. Mishra, B. Sahu, Physica A 421, 269 (2014)

    Article  ADS  Google Scholar 

  27. S. Bansal, M. Aggarwal, T.S. Gill, Plasma Sci. Tech. (2018) https://doi.org/10.1088/2058-6272/aaead8

  28. S. Bansal, M. Aggarwal, T.S. Gill, European Phys. J. D 74, 12 (2020)

    Article  Google Scholar 

  29. M. Dutta, N. Chakrabarti, R. Roychoudhury, M. Khan, Phys. Plasmas 18, 102301 (2011)

    Article  ADS  Google Scholar 

  30. M.Y. Yu, H. Luo, Phys. Plasmas 15, 024504 (2008)

    Article  ADS  Google Scholar 

  31. S. Bansal, T.S. Gill, M. Aggarwal, Contribut. Plasma Phys. 61, 5 (2020)

    Google Scholar 

  32. S.A. Shan, A.U. Rehman, A. Mushtaq, Phys. Plasmas 23, 092118 (2016)

    Article  ADS  Google Scholar 

  33. W. Malfliet, J. Computt. Appl. Math 164, 529–541 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Bansal, M. Aggarwal, T.S. Gill, Braz. J. Phys. (2018) https://doi.org/10.1007/s13538-018-0609-1

  35. W. Masood, A. Mushtaq, Phys. Plasmas 15, 022306 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Gill, T.S. The Existence and Propagation of Electron Acoustic Shock Waves in Magnetized Plasma with Electron Beam. Braz J Phys 51, 1719–1726 (2021). https://doi.org/10.1007/s13538-021-00952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00952-1

Keywords

Navigation