Skip to main content
Log in

Laboratory studies of spectral features of stimulated electromagnetic emission during the ionospheric heating experiments

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of laboratory studies of the formation of a number of spectral components of stimulated electromagnetic emission, which are related to the excitation of small-scale irregularities in the heated ionosphere. In the laboratory experiment, the small-scale irregularity was formed as a result of thermal self-channeling of short-wavelength quasielectrostatic oscillations in a magnetoplasma. Using the method of probing waves, it is experimentally shown that the trapping and waveguide propagation in a small-scale plasma irregularity are exclusively due to Langmuir waves, whereas the upper-hybrid waves with anomalous dispersion are not trapped into the irregularity. It is found that satellites shifted by about 1–2 MHz from the carrier frequency (700 MHz under the experimental conditions) are formed in the Langmuir wave spectrum during the thermal self-channeling. Two mechanisms of generation of spectral satellites have been detected. The first (dynamic) mechanism is observed during the formation of a small-scale irregularity with rapidly increasing longitudinal size. In this case, one low-frequency satellite is excited in the trapped-wave spectrum. The mechanism of the formation of this satellite is apparently related to the Doppler shift of the frequency of the Langmuir waves trapped inside the irregularity. The second (stationary) mechanism is observed in the case of a developed irregularity where its shape is close to cylindrical. In this regime, the trapped-wave spectrum has two symmetric spectral satellites, namely, high- and low-frequency ones. It may be hypothesized that the generation of these satellites is due to scattering of trapped Langmuir waves from drift oscillations of the irregularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.Thidé, H. Kopka, and P. Stubbe, Phys. Rev. Lett ., 49, 1561 (1982).

    Article  ADS  Google Scholar 

  2. P. Stubbe, H. Kopka, B. Thidé, and H. Derblom, J. Geophys. Res., 89, 7523 (1984).

    Article  ADS  Google Scholar 

  3. P. Stubbe, A. Stocker, F.Honary, et al., J. Geophys. Res., 99, 6233 (1994).

    Article  ADS  Google Scholar 

  4. E. B. Sergeev, S.M.Grach, G. P.Komrakov, et al., Radiophys. Quantum Electron., 45, No. 3, 193 (2002).

    Article  Google Scholar 

  5. L. M. Erukhimov, S. A. Metelev, E. N.Myasnikov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).

    Article  ADS  Google Scholar 

  6. J. Fejer, Rev. Geophys. Space Phys., 17, 135 (1979).

    Article  ADS  Google Scholar 

  7. S. M. Grach, N. A. Mityakov, V.O.Rapoport, and V.Yu.Trakhtengertz, Physica D, 2, 102 (1981).

    Article  ADS  Google Scholar 

  8. E. Mjolhus, J. Plasma Phys., 58, 747 (1997).

    Article  ADS  Google Scholar 

  9. V. V.Vas’kov and A. V. Gurevich, Geomagn. Aéron., 24, 350 (1984).

    Google Scholar 

  10. F.Perkins, Radio Sci ., 9, 1065 (1974).

    Article  ADS  Google Scholar 

  11. S. M. Grach and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 18, No. 9, 951 (1975).

    Article  ADS  Google Scholar 

  12. V. V. Vas’kov and A. V. Gurevich, Zh. Éksp. Teor. Fiz., 69, 176 (1975).

    ADS  Google Scholar 

  13. M.V. Starodubtsev, V.V.Nazarov, and A.V.Kostrov, Phys. Rev. Lett ., 98, 195001 (2007).

    Article  ADS  Google Scholar 

  14. V.V.Nazarov, M.V. Starodubtsev, and A.V.Kostrov, Phys. Plasmas, 14, 122106 (2007).

    Article  ADS  Google Scholar 

  15. M. M. Shvarts and S. M. Grach, J. Atmos. Sol.-Terr. Phys., 59, 2421 (1997).

    Article  ADS  Google Scholar 

  16. B.Thidé, E. B. Sergeev, S.M.Grach, et al., Phys. Rev. Lett ., 95, 255002 (2005).

    Article  ADS  Google Scholar 

  17. V. L.Ginzburg, The Propagation of Electronagnetic Waves in Plasmas, Pergamon Press, Oxford (1964).

    Google Scholar 

  18. R. L. Stenzel, Rev. Sci. Instrum., 47, 60 (1976).

    Article  Google Scholar 

  19. R.K. Fisher and R.W.Gould, Phys. Rev. Lett ., 22, 1093 (1969).

    Article  ADS  Google Scholar 

  20. M.V. Starodubtsev, V.V.Nazarov, A.V. Kostrov, and G.V.Permitin, Phys. Rev. E, 72, 026401 (2005).

    Article  ADS  Google Scholar 

  21. F. F.Chen, Introduction to Plasma Physics, Plenum Press, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Starodubtsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 11, pp. 881–896, November 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starodubtsev, M.V., Nazarov, V.V. & Kostrov, A.V. Laboratory studies of spectral features of stimulated electromagnetic emission during the ionospheric heating experiments. Radiophys Quantum El 52, 796–809 (2009). https://doi.org/10.1007/s11141-010-9187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9187-y

Keywords

Navigation