Skip to main content
Log in

A combinatorial proof of q-log-concavity of q-Eulerian numbers

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Carlitz established a q-analog of the Eulerian numbers \(A_{n,k}(q)\) and defined the relationship \(A_{n,k}(q)=q^{\frac{(n-k)(n-k+1)}{2}}A_{n,k}^{*}(q)\). In this paper, by using the combinatorial interpretation of \(A_{n,k}^{*}(q)\) and constructing injective maps, we prove that \(A_{n,k}^{*}(q)\) and \(A_{n,k}(q)\) are q-log-concave, that is, all the coefficients of the polynomials \(( A_{n,k}^{*}(q)) ^{2}- A_{n,k-1}^{*}(q) A_{n,k+1}^{*}(q) \) and \((A_{n,k}(q)) ^{2}- A_{n,k-1}(q) A_{n,k+1}(q)\) are nonnegative for \(1< k <n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Butler, L.M.: The \(q\)-log-concavity of \(q\)-binomial coefficients. J. Combin. Theory Ser. A 54(1), 54–63 (1990)

    Article  MathSciNet  Google Scholar 

  2. Carlitz, L.: A combinatorial property of \(q\)-Eulerian numbers. Am. Math. Mon. 82(1), 51–54 (1975)

    Article  MathSciNet  Google Scholar 

  3. Carlitz, L.: A note on \(q\)-Eulerian numbers. J. Combin. Theory Ser. A 25(1), 90–94 (1978)

    Article  MathSciNet  Google Scholar 

  4. Carlitz, L.: \(q\)-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 76(2), 332–350 (1954)

    MathSciNet  Google Scholar 

  5. Chen, W.Y.C., Wang, L.X.W., Yang, A.L.B.: Schur positivity and the \(q\)-log-convexity of the Narayana polynomials. J. Algebraic Combin. 32(3), 303–338 (2010)

    Article  MathSciNet  Google Scholar 

  6. Foulkes, H.O.: A nonrecursive combinatorial rule for Eulerian numbers. J. Combin. Theory Ser. A 22(2), 246–248 (1977)

    Article  MathSciNet  Google Scholar 

  7. Ji, K.Q.: The \(q\)-log-concavity and unimodality of \(q\)-Kaplansky numbers. Discret. Math. 345(6), 112821 (2022)

    Article  MathSciNet  Google Scholar 

  8. Kurtz, D.C.: A note on concavity properties of triangular arrays of numbers. J. Combin. Theory Ser. A 13(1), 135–139 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for his/her constructive comments and helpful suggestions which have greatly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Xinmiao Liu and Jiangxia Hou wrote the main manuscript text and Fengxia Liu prepared the examaples. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jiangxia Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC (No. 11961067).

Appendix

Appendix

For the lattice path \(\sigma ,\ \beta ,\ w=\phi (\sigma ),\) and \(v=\phi (\beta )\) sketched in Fig. 3, we obtain

$$\begin{aligned} P(q)= & {} (1+q)^{2}(1+q+q^{2})^{2}(1+q+q^{2}+q^{3})^{2}\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4}),\\ Q(q)= & {} (1+q)^{2}(1+q+q^{2})^{2}(1+q+q^{2}+q^{3})^{2}\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4}),\\ M(q)= & {} (1+q+q^{2})^{2}(1+q+q^{2}+q^{3})^{2}\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4}+q^{5}),\\ N(q)= & {} (1+q)(1+q+q^{2})(1+q+q^{2}+q^{3})\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4})\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4}+q^{5})\\ P(q)Q(q)-M(q)N(q)= & {} (1+q)^{4}(1+q+q^{2})^{4}(1+q+q^{2}+q^{3})^{4}\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4})^{2}-(1+q)(1+q+q^{2})^{3}\\{} & {} \times (1+q+q^{2}+q^{3})^{3}(1+q+q^{2}+q^{3}+q^{4})\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4}+q^{5})^{2}\\= & {} q^{32}+14 q^{31}+100 q^{30}+490 q^{29}+1852 q^{28}\\{} & {} +5743 q^{27}+15169 q^{26}+34981 q^{25}+71658 q^{24}\\{} & {} +132037 q^{23}+220887 q^{22}+337858 q^{21}+474989 q^{20}\\{} & {} +616205 q^{19}+739747 q^{18}+823317 q^{17}\\{} & {} +850381 q^{16}+815280 q^{15}+725070 q^{14}+597307 q^{13}\\{} & {} +454692 q^{12}+318731 q^{11}+204753 q^{10}\\{} & {} +119762 q^{9}+63228 q^{8}+29777 q^{7}+12307 q^{6}\\{} & {} +4361 q^{5}+1279 q^{4}+293 q^{3}+47 q^{2}+4 q,\\ P(q)Q(q)-qM(q)N(q)= & {} (1+q)^{4}(1+q+q^{2})^{4}\\{} & {} \times (1+q+q^{2}+q^{3})^{4}(1+q+q^{2}+q^{3}+q^{4})^{2}\\ {}{} & {} -q(1+q)(1+q+q^{2})^{3}(1+q+q^{2}+q^{3})^{3}\\{} & {} \times (1+q+q^{2}+q^{3}+q^{4})(1+q+q^{2}+q^{3}+q^{4}+q^{5})^{2}\\= & {} q^{32}+13 q^{31}+91 q^{30}+446 q^{29}\\{} & {} +1699 q^{28}+5323q^{27}{+}14207 q^{26}{+}33081 q^{25}+68354 q^{24}\\{} & {} +126911 q^{23}+213738 q^{22}+328873 q^{21}\\{} & {} +464847 q^{20}+606050q^{19}+731004 q^{18}+817383 q^{17}\\{} & {} +848278 q^{16}+817383 q^{15}+731004 q^{14}\\{} & {} +606050 q^{13}+464847q^{12}+328873 q^{11}+213738 q^{10}\\{} & {} +126911 q^{9}+68354 q^{8}+33081 q^{7}\\{} & {} +14207 q^{6}+5323 q^{5}+1699q^{4}+446 q^{3}+91 q^{2}+13 q +1. \end{aligned}$$

It is clear that \(P_{w}(q)P_{v}(q)-P_{\sigma }(q)P_{\beta }(q)\ge _{q} 0\) and \(P_{w}(q)P_{v}(q)-qP_{\sigma }(q)P_{\beta }(q)\ge _{q} 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hou, J. & Liu, F. A combinatorial proof of q-log-concavity of q-Eulerian numbers. Ramanujan J (2024). https://doi.org/10.1007/s11139-024-00841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11139-024-00841-6

Keywords

Mathematics Subject Classification

Navigation