Skip to main content
Log in

Arithmetic statistics for Galois deformation rings

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Given an elliptic curve E defined over the rational numbers and a prime p at which E has good reduction, we consider the Galois deformation ring parametrizing lifts of the residual representation on the p-torsion group E[p]. The deformations considered are subject to the flat condition at p. For a fixed elliptic curve without complex multiplication, it is shown that these deformation rings are unobstructed for all but finitely many primes. For a fixed prime p and varying elliptic curve E, we relate the problem to the question of how often p does not divide the modular degree. Heuristics due to M.Watkins based on those of Cohen and Lenstra indicate that this proportion should be \(\prod _{i\ge 1} \left( 1-\frac{1}{p^i}\right) \approx 1-\frac{1}{p}-\frac{1}{p^2}\). This heuristic is supported by computations which indicate that most elliptic curves (satisfying further conditions) have smooth deformation rings at a given prime \(p\ge 5\), and this proportion comes close to \(100\%\) as p gets larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

No data was generated or analysed in this paper.

References

  1. Agashe, A., Ribet, K.A., Stein, W.A.: The modular degree, congruence primes, and multiplicity one. In: Number Theory, Analysis and Geometry, pp 19-49. Springer, Boston (2012)

  2. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MathSciNet  Google Scholar 

  3. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. 179, 501–609 (2014)

    Article  MathSciNet  Google Scholar 

  4. Breuil, C., et al.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (2001)

    Article  MathSciNet  Google Scholar 

  5. Böckle, G.: Presentations of universal deformation rings. Lond. Math. Soc. Notes Ser. 567, 572 (2005)

    Google Scholar 

  6. Boston, N.: Deformations of Galois Representations Associated to the Cusp Form \(\Delta \). Séminaire de Théorie des Nombres, Paris 1987-88, pp. 51-62. Birkhäuser, Boston, MA (1990)

  7. Boston, Nigel: Explicit deformation of Galois representations. Invent. Math. 103(1), 181–196 (1991)

    Article  MathSciNet  Google Scholar 

  8. Boston, N., Mazur, B.: Explicit universal deformations of Galois representations. Mathematical Society of Japan, Algebraic Number Theory-in honor of K. Iwasawa (1989)

  9. Brinon, O., Conrad, B.: CMI summer school notes on p-adic Hodge theory (2009)

  10. Brumer, A., McGuinness, O.: The behavior of the Mordell-Weil group of elliptic curves. Bull. Am. Math. Soc. 23(2), 375–382 (1990)

    Article  MathSciNet  Google Scholar 

  11. Calegari, Frank, Emerton, Matthew: Elliptic curves of odd modular degree. Israel J. Math. 169(1), 417–444 (2009)

    Article  MathSciNet  Google Scholar 

  12. Clozel, Laurent, Harris, Michael, Taylor, Richard: Automorphy for some l-adic lifts of automorphic mod l Galois representations. Publ. Math. l’IHÉS 108, 1–181 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cremona, J. E., Sadek, M.: Local and global densities for Weierstrass models of elliptic curves. arXiv preprint arXiv:2003.08454 (2020)

  14. Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. l’Ecole Normale Supérieure 37(5), 663–727 (2004)

    Article  MathSciNet  Google Scholar 

  15. Duke, William: Elliptic curves with no exceptional primes. C. R. Acad. Sci. Série 1 Math. 325.8, 813–818 (1997)

    MathSciNet  Google Scholar 

  16. Gamzon, Adam: Unobstructed Hilbert modular deformation problems. J. Théorie Nombres Bordeaux 28(1), 221–236 (2016)

    Article  MathSciNet  Google Scholar 

  17. Guiraud, David-Alexandre.: Unobstructedness of Galois deformation rings associated to regular algebraic conjugate self-dual cuspidal automorphic representations. Algebra Number Theory 14(6), 1331–1380 (2020)

    Article  MathSciNet  Google Scholar 

  18. Fontaine, Jean-Marc., Laffaille, G.: Construction de représentations \( p \)-adiques. Ann. Sci. l’École Normale Supérieure 15(4), 547–608 (1982)

    Article  MathSciNet  Google Scholar 

  19. Hatley, Jeffrey: Obstruction criteria for modular deformation problems. Int. J. Number Theory 12(01), 273–285 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kisin, Mark: The Fontaine-Mazur conjecture for \({\text{ GL }}_2\). J. Am. Math. Soc. 22(3), 641–690 (2009)

    Article  Google Scholar 

  21. Mazur, B.: Deforming galois representations. Galois Groups over \({\mathbb{Q}}\), PP 385–437. Springer, New York (1989)

  22. Mazur, Barry: An Introduction to the Deformation Theory of Galois Representations. Modular Forms and Fermat’s Last Theorem, pp. 243–311. Springer, New York (1997)

    Google Scholar 

  23. Mazur, Barry: An infinite fern in the universal deformation space of Galois representations. Collectanea Math. 48(2), 155–193 (1997)

    MathSciNet  Google Scholar 

  24. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, vol. 323. Springer, New York (2013)

    Google Scholar 

  25. Ramakrishna, Ravi: On a variation of Mazur’s deformation functor. Compos. Math. 87(3), 269–286 (1993)

    MathSciNet  Google Scholar 

  26. Ramakrishna, R.: Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Ann. Math. 156, 115–154 (2002)

    Article  MathSciNet  Google Scholar 

  27. Ridgdill, P.: On the Frequency of Finitely Anomalous Elliptic Curves (unpublished dissertation). University of Massachusetts, Amherst (2010)

  28. Serre, Jean-Pierre.: Galois Properties of Finite Order Points of Elliptic Curves. Invent. Math. 15, 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  29. Taylor, Richard, Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  30. Taylor, Richard: Automorphy for some l-adic lifts of automorphic mod l Galois representations. II. Publ. Math. 108(1), 183–239 (2008)

    Article  MathSciNet  Google Scholar 

  31. Watkins, Mark: Computing the modular degree of an elliptic curve. Exp. Math. 11(4), 487–502 (2002)

    Article  MathSciNet  Google Scholar 

  32. Taylor, Richard: Remarks on a conjecture of Fontaine and Mazur. J. Inst. Math. Jussieu 1(1), 125–143 (2002)

    Article  MathSciNet  Google Scholar 

  33. Wiles, Andrew: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(3), 443–551 (1995)

    Article  MathSciNet  Google Scholar 

  34. Weston, Tom: Unobstructed modular deformation problems. Am. J. Math. 126(6), 1237–1252 (2004)

    Article  MathSciNet  Google Scholar 

  35. Weston, Tom: Explicit unobstructed primes for modular deformation problems of squarefree level. J. Number Theory 110(1), 199–218 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

From September 2022 to September 2023, the first author’s research was supported by the CRM-Simons fellowship. We would like to thank the referee for the helpful report.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally in the genesis of the ideas, and the paper was simultaneously written by both authors.

Corresponding author

Correspondence to Anwesh Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Weston, T. Arithmetic statistics for Galois deformation rings. Ramanujan J (2024). https://doi.org/10.1007/s11139-024-00839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11139-024-00839-0

Keywords

Mathematics Subject Classification

Navigation