Skip to main content
Log in

The Frobenius formula for \(A=(a,ha+d,ha+b_2d, \ldots ,ha+b_kd)\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Given a set of positive integers \(A=(a_1, a_2, \ldots , a_n)\) whose greatest common divisor is 1, the Frobenius number g(A) is the largest integer not representable as a linear combination of the \(a_i\)’s with nonnegative integer coefficients. We find the stable property introduced for the square sequence \(A=(a,a+1,a+2^2,\dots , a+k^2)\) naturally extends for \(A(a)=(a,ha+dB)=(a,ha+d,ha+b_2d, \ldots ,ha+b_kd)\). This gives a parallel characterization of g(A(a)) as a "congruence class function" modulo \(b_k\) when a is large enough. For orderly sequence \(B=(1,b_2,\dots ,b_k)\), we find good bound for a. In particular we calculate \(g(a,ha+dB)\) for \(B=(1,2,b,b+1)\), \(B=(1,2,b,b+1,2b)\), \(B=(1,b,2b-1)\), and \(B=(1,2, \ldots ,k,K)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamaszek, A., Adamaszek, M.: Combinatorics of the change-making problem. Eur. J. Comb. 31, 47–63 (2010)

    Article  MathSciNet  Google Scholar 

  2. Assi, A., D’Anna, M., García-Sánchez, P.A.: Numerical Semigroups and Applications, vol. 3, 2nd edn. RSMS Springer, Cham (2020)

    Google Scholar 

  3. Brauer, A.: On a problem of partitions. Am. J. Math. 64, 299–312 (1942)

    Article  Google Scholar 

  4. Brauer, A., Shockley, J.E.: On a problem of Frobenius. J. Reine Angew. Math. 211, 215–220 (1962)

    MathSciNet  Google Scholar 

  5. Cowen, L. J., Cowen, R., Steinberg, A.: Totally greedy coin sets and greedy obstructions. Electron. J. Comb. 15 (2008), #R90

  6. Curtis, F.: On formulas for the Frobenius number of a numerical semigroup. Math. Scand. 67, 190–192 (1990)

    Article  MathSciNet  Google Scholar 

  7. Dulmage, A.L., Mendelsohn, N.S.: Gaps in the exponent set of primitive matrices. Ill. J. Math. 8, 642–656 (1964)

    MathSciNet  Google Scholar 

  8. Einstein, D., Lichtblau, D., Strzebonski, A., Wagon, S.: Frobenius numbers by lattice point enumeration. Integers 7, A15 (2007)

    MathSciNet  Google Scholar 

  9. Hu, T.C., Lenard, M.L.: Optimality of a Heuristic solution for a class of Knapsack problems. Oper. Res. 24(1), 193–196 (1976)

    Article  MathSciNet  Google Scholar 

  10. Hujter, M.: On the lowest value of the Frobenius number, Technical Report MN/31 Computer and Automation Inst., Hungarian Academy of Sciences (1987)

  11. Komatsu, T.: Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discret. Appl. Math. 315, 110–126 (2022)

    Article  MathSciNet  Google Scholar 

  12. Komatsu, T.: Sylvester sums on the Frobenius set in arithmetic progression. In: Yilmaz, F., et al. (eds.) Mathematics Methods for Engineering Applications. Springer Proceedings in Mathematics & Statistics, vol. 384, pp. 1–23. Springer, Cham (2022)

    Google Scholar 

  13. Komatsu, T.: Sylvester sums on the Frobenius set in arithmetic progression with initial gaps. In: Debnath, P., et al. (eds.) Advances in Number Theory and Applied Analysis, pp. 99–136. World Scientific, Singapore (2023)

    Chapter  Google Scholar 

  14. Komatsu, T., Ying, H.: The p-numerical semigroup of the triple of arithmetic progressions. Symmetry 15(7), Article 1328 (2023)

  15. Liu, F., Xin, G.: On Frobenius formulas of power sequences. arXiv:2210.02722 (2022)

  16. Liu, F., Xin, G.: A combinatorial approach to Frobenius numbers of some special sequences (Complete Version). arXiv:2303.07149 (2023)

  17. Magazine, M.J., Nemhauser, G.L., Trotter, L.E., Jr.: When the greedy solution solves a class of Knapsack problems. Oper. Res. 23(2), 207–217 (1975)

  18. Ramírez Alfonsín J.L.: The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and Its Applications, vol. 30. Oxford University Press, Oxford (2005)

  19. Roberts, J.B.: Note on linear forms. Proc. Am. Math. Soc. 7, 465–469 (1956)

    Article  MathSciNet  Google Scholar 

  20. Robles-Pérez, A.M., Rosales, J.C.: The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 186, 473–492 (2018)

    Article  MathSciNet  Google Scholar 

  21. Rödseth, Ö.J.: On a linear diophantine problem of Frobenius II. J. Reine Angew Math. 307(308), 431–440 (1979)

    MathSciNet  Google Scholar 

  22. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)

    Book  Google Scholar 

  23. Selmer, E.S.: On the linear Diophantine problem of Frobenius. J. Reine Angew. Math. 293(294), 1–17 (1977)

    MathSciNet  Google Scholar 

  24. Sylvester, J.J.: On sub-invariants, i.e., semi-invariants to binary quantics of an unlimited order. Am. J. Math. 5, 119–136 (1882)

    Article  Google Scholar 

  25. Tripathi, A.: The Frobenius problem for modified arithmetic progressions. J. Integer Seq. 16(7), 13.7.4 (2013)

  26. Tripathi, A.: On the Frobenius problem for \(\{a,ha+d,ha+bd,ha+b^2d,...,ha+b^kd\}\). J. Number Theory 162, 212–223 (2016)

  27. Tripathi, A.: Formulate for the Frobenius number in three variables. J. Number Theory 170, 368–389 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to show their sincere appreciations to all suggestions improving the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoce Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China [12071311].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xin, G., Ye, S. et al. The Frobenius formula for \(A=(a,ha+d,ha+b_2d, \ldots ,ha+b_kd)\). Ramanujan J 64, 489–504 (2024). https://doi.org/10.1007/s11139-024-00837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-024-00837-2

Keywords

Mathematics Subject Classification

Navigation