Skip to main content
Log in

A generalization of a theorem of Nagell

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let n be a positive integer. Theisinger [7] proved that if \({n\ge 2}\) , then the n-th harmonic sum \({\sum_{k=1}^n\frac{1}{k}}\) is not an integer. Let a and b be positive integers. Nagell [6] extended Theisinger’s theorem by showing that the reciprocal sum \({\sum_{k=1}^{n}\frac{1}{a+(k-1)b}}\) is not an integer if \({n\ge 2}\) . Erdős and Niven [2] proved a theorem of a similar nature that states that there is only a finite number of integers n for which one or more of the elementary symmetric functions of \({1, 1/2, \ldots, 1/n}\) is an integer. We present a generalization of Nagell’s theorem. In fact, we show that for arbitrary n positive integers \({s_1, \ldots, s_n}\) (not necessarily distinct and not necessarily monotonic), the reciprocal power sum

$$\sum_{k=1}^{n}\frac{1}{(a+(k-1)b)^{s_{k}}}$$

is never an integer if \({n\ge 2}\) . The proof of our result is analytic and p-adic in character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y.G., Tang M.: On the elementary symmetric functions of \({1, 1/2, \ldots, 1/n}\) . Amer. Math. Monthly. 119, 862–867 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Erdős P., Niven I.: Some properties of partial sums of the harmonic series. Bull. Amer. Math. Soc., 52, 248–251 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hong S.F., Wang C.L.: The elementary symmetric functions of reciprocals of the elements of arithmetic progressions. Acta Math. Hungar., 144, 196–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-functions, 2nd ed., Springer-Verlag (New York, 1984).

  5. Luo Y.Y., Hong S.F., Qian G.Y., Wang C.L.: The elementary symmetric functions of a reciprocal polynomial sequence. C. R. Acad. Sci. Paris, Ser. I, 352, 269–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nagell T.: Eine Eigenschaft gewissen Summen. Skr. Norske Vid. Akad. Kristiania, 13, 10–15 (1923)

    MATH  Google Scholar 

  7. Theisinger L.: Bemerkung über die harmonische Reihe, Monatsh. Math. Phys., 26, 132–134 (1915)

    MathSciNet  MATH  Google Scholar 

  8. Wang C.L., Hong S.F.: On the integrality of the elementary symmetric functions of \({1, 1/3, \ldots, 1/(2n-1)}\) . Math. Slovaca, 65, 957–962 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Yang W.X., Li M., Feng Y.L., Jiang X.: On the integrality of the first and second elementary symmetric functions of \({1, 1/2^{s_2}, \ldots, 1/n^{s_n}}\) .. AIMS Math., 2, 682–691 (2017)

    Article  Google Scholar 

  10. Yin Q.Y., Hong S.F., Yang L.P., Qiu M.: Multiple reciprocal sums and multiple reciprocal star sums of polynomials are almost never integers. J. Number Theory, 195, 269–292 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors thank the anonymous referee for careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Hong.

Additional information

The research was supported partially by National Science Foundation of China Grant #11771304 and by the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y.L., Hong, S.F., Jiang, X. et al. A generalization of a theorem of Nagell. Acta Math. Hungar. 157, 522–536 (2019). https://doi.org/10.1007/s10474-018-00903-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-00903-4

Key words and phrases

Mathematics Subject Classification

Navigation