Skip to main content
Log in

A newform theory for mod-p Katz modular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we provide a definition of mod-p Katz newforms. Then strong multiplicity-one theorems for mod-p Katz modular forms are proved. We show that a cuspidal mod-p Katz eigenform which admits an irreducible Galois representation is in the level- and weight-old space of a uniquely associated mod-p Katz newform. We also set up variants of multiplicity-one results for mod-p Katz eigenforms which have reducible Galois representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anni, S.: A note on the minimal level of realization for a mod \(\ell \) eigenvalue system. In: Automorphic Forms and Related Topics. Contemporary Mathematics, vol. 732, pp. 1–13. American Mathematical Society, Providence, RI (2019)

    Chapter  Google Scholar 

  2. Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _{0}(m)\). Math. Ann. 185, 134–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billerey, N., Menares, R.: On the modularity of reducible \({\rm mod}\, l\) Galois representations. Math. Res. Lett. 23(1), 15–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buzzard, K.: On level-lowering for mod 2 representations. Math. Res. Lett. 7(1), 95–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cais, B.: Serre’s conjecture. https://www.math.arizona.edu/cais/Papers/Expos/Serre05.pdf

  6. Calegari, F.: Is Serre’s conjecture still open? In: Blogpost. https://galoisrepresentations.wordpress.com/2014/08/10/is-serres-conjecture-still-open

  7. Carayol, H.: Sur les représentations galoisiennes modulo \(l\) attachées aux formes modulaires. Duke Math. J. 59(3), 785–801 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deligne, P., Serre, J.-P.: Formes modulaires de poids \(1\). Ann. Sci. École Norm. Sup. (4) 7, 507–530 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diamond, F.: The refined conjecture of Serre, elliptic curves. In: Modular Forms, & Fermat’s Last Theorem (Hong Kong, 1993). Ser. Number Theory I, pp. 22–37. International Press, Cambridge (1995)

  10. Diamond, F., Im, J.: Modular forms and modular curves. In: Seminar on Fermat’s Last Theorem (Toronto,ON, 1993–1994). Canadian Mathematical Society Conference Proceedings, vol. 17, pp. 39–133. American Mathematical Society, Providence, RI (1995)

  11. Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edixhoven, B.: Serre’s conjecture. In: Cornell, G., Silverman, J.H., Stevens, G. (eds.) Modular Forms and Fermat’s Last Theorem, pp. 209–242. Springer, Boston (1997)

    Chapter  Google Scholar 

  13. Gross, B.H.: A tameness criterion for Galois representations associated to modular forms (mod \(p\)). Duke Math. J. 61(2), 445–517 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katz, N.M.: \(p\)-Adic properties of modular schemes and modular forms. In: Modular Functions of One Variable, III (Proceedings International Summer School, University of Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 350, pp. 69–190 (1973)

  15. Katz, N.M.: A result on modular forms in characteristic \(p\). In: Modular Functions of One Variable, V (Proceedings of Second International Conference, University of Bonn, Bonn, 1976). Lecture Notes in Mathematics, vol. 601, pp. 53–61 (1977)

  16. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. II. Invent. Math. 178(3), 505–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kisin, M.: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178(3), 587–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, W.C.W.: Newforms and functional equations. Math. Ann. 212, 285–315 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Linowitz, B., Thompson, L.: The sign changes of Fourier coefficients of Eisenstein series. Ramanujan J. 37(2), 223–241 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mamo, D.B.: A newform theory for Katz modular forms. Ph.D. Thesis, University of Luxembourg (2020). http://hdl.handle.net/10993/45321

  22. Mazur, B.: Modular curves and the Eisenstein ideal, with an appendix by Mazur and M. Rapoport. Inst. Hautes Études Sci. Publ. Math. 47(1977), 33–186 (1978)

  23. Ohta, M.: Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II. Tokyo J. Math. 37, 273–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ono, K., Ramsey, N.: A mod \(\ell \) Atkin-Lehner theorem and applications. Arch. Math. (Basel) 98(1), 25–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ribet, K.A.: Report on mod \(l\) representations of \({\rm Gal}(\overline{\bf Q}/{\bf Q})\). In: Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, vol. 55, pp. 639–676. American Mathematical Society, Providence, RI (1994)

  26. Ribet, K., Stein, W.: Lectures on Serre’s Conjectures. Arithmetic Algebraic Geometry (Park City, UT, 1999), IAS/Park City Mathematics, Series, vol. 9, pp. 143–232. American Mathematical Society, Providence, RI (2001)

  27. Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de \({\rm Gal}(\overline{ Q}/{ Q})\). Duke Math. J. 54(1), 179–230 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein, W.: Modular Forms, a Computational Approach. Graduate Studies in Mathematics, vol. 79. American Mathematical Society, Providence, RI (2007). With an appendix by Paul E. Gunnells

  29. Takai, Y.: An effective isomorphy criterion for mod \(\ell \) Galois representations. J. Number Theory 131(8), 1409–1419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weisinger, J.: Some results on classical Eisenstein series and modular forms over function fields. Ph.D. Thesis, Harvard University (1977)

Download references

Acknowledgements

The author would like to thank his advisor Gabor Wiese for his valuable discussions, remarks and comments which improve the quality of the paper which is the product of the dissertation, and Ian Kiming and Samuele Anni for their comments on the manuscript. I would like to thank Lassina Dembele for his help using Magma. I would also like to thank the referee for the comments including to pointing out that the proof we give for Theorem 1.2 did not work for \(p=2\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mamo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel Mamo is supported by the Luxembourg National Research Fund PRIDE 15/10949314/GSM.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamo, D. A newform theory for mod-p Katz modular forms. Ramanujan J 60, 861–884 (2023). https://doi.org/10.1007/s11139-022-00651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00651-8

Keywords

Mathematics Subject Classification

Navigation