Skip to main content
Log in

Generalized q-difference equations for (qc)-hypergeometric polynomials and some applications

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, our investigation is motivated by the concept of (qc)-derivative operators introduced by Zhang (Adv Appl Math 121:102081, 2020). Then we seek and find that (qc)-hypergeometric polynomials involving (qc)-derivative operators are solutions of certain generalized q-difference equations. We introduce two homogeneous (qc)-difference operators \({\mathbb {T}}_c(a,b,d,u,v,xD_{c,y})\) and \({\mathbb {E}}_c(a,b,d,u,v,x\theta _{c,y})\), which turn out to be suitable for studying two families of generalized (qc)-Al-Salam–Carlitz polynomials \(\Phi _n^{(a,b,d, u,v,c)}(x,y|q)\) and \(\Upsilon _n^{(a,b,d, u,v,c)}(x,y|q)\). Several q-identities such as: generating functions, Andrews–Askey integrals and \(U(n+1)\) type q-binomial formulas for generalized q-polynomials are derived by the method of (qc)-difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Salam, W.A., Carlitz, L.: Some orthogonal \(q\)-polynomials. Math. Nachr. 30, 47–61 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R.: Another \(q\)-extension of the beta function. Proc. Am. Math. Soc. 81, 97–100 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Arjika, S., Chaudhary, M.P., Hounkonnou, M.N.: Heine’s transformation formula due to \(q\)-difference equations. J. Ramanujan Soc. Math. Math. Sci. 9, 83–96 (2022)

  4. Cao, J.: A note on moment integrals and some applications. J. Math. Anal. Appl. 410, 348–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, J.: Notes on Askey–Roy integral and certain generating functions for \(q\)-polynomials. J. Math. Anal. Appl. 409, 435–445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, J.: A note on \(q\)-difference equations for Ramanujan’s integrals. Ramanujan J. 48, 63–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, J., Niu, D.-W.: A note on \(q\)-difference equations for Cigler’s polynomials. J. Differ. Equ. Appl. 22, 1880–1892 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, J., Srivastava, H.M., Liu, Z.-G.: Some iterated fractional \(q\)-integrals and their applications. Fract. Calc. Appl. Anal. 21, 672–695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, J., Xu, B., Arjika, S.: A note on generalized \(q\)-difference equations for general Al-Salam–Carlitz polynomials. Adv. Differ. Equ. 2020, 668 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W.Y.C., Liu, Z.-G.: Parameter augmenting for basic hypergeometric series II. J. Combin. Theory Ser. A 80, 175–195 (1977)

    Article  Google Scholar 

  11. Chen, W.Y.C., Liu, Z.-G.: Parameter augmenting for basic hypergeometric series, I. In: Sagan, B.E., Stanley, R.P. (eds.) Mathematical Essays in Honor of Gian-Carlo Rota, pp. 111–129. Birkauser, Basel (1998)

    Chapter  Google Scholar 

  12. Fang, J.-P.: \(q\)-Difference equation and \(q\)-polynomials. Appl. Math. Comput. 248, 550–561 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Gasper, G. and Rahman, M.: Basic Hypergeometric Series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, Volume 35; Cambridge University Press: Cambridge, UK; New York, NY, USA; Port Chester, NY, USA; Melbourne, Australia; Sydney, Australia, (1990); see also 2nd ed., Encyclopedia of Mathematics and Its Applications, vol 96; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA (2004)

  14. Gunning, R.: Introduction to Holomorphic Functions of Several Variables. In: Function theory, Wadsworth and Brooks/Colc, Bclmont (1990)

  15. Jackson, F.H.: On \(q\)-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  16. Jackson, F.H.: Basic integration. Quart. J. Math. (Oxford) 2, 1–16 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koekoek, R., Swarttouw, R. F.: The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its \(q\)-Analogue. Report No. 98–17; Delft University of Technology: Delft, The Netherlands (1998)

  18. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  19. Liu, Z.-G.: Some operator identities and \(q\)-series transformation formulas. Discrete Math. 265, 119–139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z.-G.: Two \(q\)-difference equations and \(q\)-operator identities. J. Differ. Equ. Appl. 16, 1293–1307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z.-G.: A \(q\)-extension of a partial differential equation and the Hahn polynomials. Ramanujan J. 38, 481–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malgrange, B.: Lectures on the Theory of Functions of Several Complex Variables. Springer, Berlin (1984)

    MATH  Google Scholar 

  23. Milne, S.C.: Balanced \({}_3\phi _2\) summation theorems for \(U(n)\) basic hypergeometric series. Adv. Math. 131, 93–187 (1997)

    Article  MathSciNet  Google Scholar 

  24. Roman, S.: The theory of the umbral calculus I. J. Math. Anal. Appl. 87, 58–115 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  26. Srivastava, H.M.: Certain \(q\)-polynomial expansions for functions of several variables I. IMA J. Appl. Math. 30, 315–323 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Srivastava, H.M.: Certain \(q\)-polynomial expansions for functions of several variables II. IMA J. Appl. Math. 33, 205–209 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Srivastava, H.M.: Operators of basic (or \(q\)-) calculus and fractional \(q\)-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A 44, 327–344 (2020)

    Article  MathSciNet  Google Scholar 

  29. Srivastava, H.M., Abdlhusein, M.A.: New forms of the Cauchy operator and some of their applications. Russ. J. Math. Phys. 23, 124–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Srivastava, H.M., Arjika, S.: Generating functions for some families of the generalized Al-Salam–Carlitz \(q\)-polynomials. Adv. Differ. Equ. 2020, 498 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited), Chichester (1985)

    MATH  Google Scholar 

  32. Srivastava, H.M., Cao, J., Arjika, S.: A note on generalized \(q\)-difference equations and their applications involving \(q\)-hypergeometric functions. Symmetry 12, 1–16 (2020)

    Article  Google Scholar 

  33. Thomae, J.: Beitrage zur Theorie der durch die Heinesche Reihe... J. Reine Angew. Math. 70, 258–281 (1869)

    MathSciNet  MATH  Google Scholar 

  34. Thomae, J.: Les series Heineennes superieures, ou les series de la forme... Ann. Math. Pur. Appl. 4, 105–138 (1870)

    Article  MATH  Google Scholar 

  35. Wang, M.: Generalizations of Milne’s \(U(n+1) q\)-binomial theorem. Comput. Math. Appl. 58, 80–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, M.: An identity from the Al-Salam–Carlitz polynomials. Math. AEterna 2, 185–187 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Wang, M.: A transformation for the Al-Salam–Carlitz polynomials. ARS Comb. 112, 411–418 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, H.W.J.: \((q, c)\)-Derivative operator and its applications. Adv. Appl. Math. 121, 102081 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express deep appreciation to the referee and the editor for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY21A010019) and the National Natural Science Foundation of China (Grant No. 12071421)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhou, HL. & Arjika, S. Generalized q-difference equations for (qc)-hypergeometric polynomials and some applications. Ramanujan J 60, 1033–1067 (2023). https://doi.org/10.1007/s11139-022-00634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00634-9

Keywords

Mathematics Subject Classification

Navigation