1 Introduction

The objective of this paper is to give an extension of know results on generalized Verma–Jain polynomials [13] and the Hahn polynomials [1, 6, 12, 30]. Here, we will give and prove generating functions for the q-polynomials \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q), \zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\), and several q-identities by using the q-difference equations and the fractional q-integrals. In this article, we begin our investigation by reviewing some definitions as in [33] with \(0< q<1\). The basic hypergeometric function \({}_{\mathfrak{r}}\Phi _{\mathfrak{s}}\) is defined in [16, 25] (see also for details [24, Chap. 3] and [32, p. 347, Eq. (272)]):

Φ s r [ a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q ; z ] = n = 0 ( a 1 , a 2 , , a r ; q ) n ( q , b 1 , b 2 , , b s ; q ) n [ ( 1 ) n q ( n 2 ) ] 1 + s r z n .
(1.1)

For all z if \(\mathfrak{r}\leq \mathfrak{s}\) and for \(|z|<1\) if \(\mathfrak{r}=\mathfrak{s}+1\), the basic hypergeometric function converges absolutely. (See [31] for some recent applications of the basic hypergeometric function.) For any real or complex parameter x, the q-shifted factorials of \({}_{\mathfrak{r}}\Phi _{\mathfrak{s}}\) are defined, respectively, by

$$\begin{aligned} (x;q)_{0}=1,\qquad (x;q)_{n}=\prod_{k=0}^{n-1} \bigl(1-xq^{k}\bigr), n\geq 1,\quad x\in \mathbb{C} \end{aligned}$$
(1.2)

and

$$\begin{aligned} (x;q)_{\infty }=\prod_{k=0}^{\infty } \bigl(1-xq^{k}\bigr). \end{aligned}$$
(1.3)

For \(m\in \{1, 2, 3, \ldots \}\), the product of several q-shifted factorials are given by

$$\begin{aligned} &(x_{1},x_{2},\ldots,x_{m};q)_{n}=(x_{1};q)_{n} (x_{2};q)_{n}\ldots (x_{m};q)_{n},\\ & (x_{1},x_{2},\ldots,x_{m};q)_{\infty }=(x_{1};q)_{\infty }(x_{2};q)_{\infty } \ldots (x_{m};q)_{\infty }. \end{aligned}$$

Taking \(x=aq^{-n}, a\neq q^{n}\) in (1.2), we have the following relation:

$$\begin{aligned} \bigl(aq^{-n};q\bigr)_{n}= \frac{(aq^{-n};q)_{\infty }}{(a;q)_{\infty }}=(q/a;q)_{n}(-a)^{n}q^{-n-(\frac{n}{2})}. \end{aligned}$$
(1.4)

The q-binomial coefficient is defined as [16]

$$\begin{aligned} \begin{bmatrix} n \\ k \end{bmatrix}_{q}=\frac{(q^{-n};q)_{k}}{(q;q)_{k}}(-1)^{k}q^{n k-(\frac{k}{2})},\quad 0\leq k\leq n. \end{aligned}$$
(1.5)

Chen et al. [15] introduced the homogeneous q-difference operator \(D_{xy}\), Saad and Sukhi [23] introduced the dual homogeneous q-difference operator \({\theta }_{xy}\) as

$$\begin{aligned} D_{xy} \bigl\{ f(x,y)\bigr\} :=\frac{f(x,q^{-1}y)-f( qx, y)}{x-q^{-1}y}, \qquad{ \theta }_{xy} \bigl\{ f(x,y)\bigr\} :=\frac{f(q^{-1}x,y)-f( x,qy)}{q^{-1}x-y}. \end{aligned}$$
(1.6)

Al-Salam and Carlitz [2, Eqs. (1.11) and (1.15)] have introduced the following polynomials:

$$\begin{aligned} \phi _{n}^{(a)}(x|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q}(a;q)_{k}x^{k} \quad \text{and} \quad\psi _{n}^{(a)}(x|q)= \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q}q^{k(k-n)} \bigl(aq^{1-k};q\bigr)_{k}x^{k}. \end{aligned}$$
(1.7)

Since then, these polynomials are called “Al-Salam–Carlitz polynomials” by many authors. Because of their considerable role in the theories of q-series and q-orthogonal polynomials, many authors investigated an extension of the Al-Salam–Carlitz polynomials (see [7, 12, 28, 35]).

Recently, Cao [7, Eq. (4.7)] has introduced two families of generalized Al-Salam–Carlitz polynomials,

$$\begin{aligned} &\phi _{n}^{(a,b,c)}(x,y|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(a,b;q)_{k}}{(c;q)_{k}}x^{k}y^{n-k}, \end{aligned}$$
(1.8)
$$\begin{aligned} &\psi _{n}^{(a,b,c)}(x,y|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(-1)^{k}q^{\binom{k+1}{2}-nk}(a,b;q)_{k}}{(c;q)_{k}}x^{k}y^{n-k}, \end{aligned}$$
(1.9)

together with the following generating functions [7, Eqs. (4.10) and (4.11)]:

n = 0 ϕ n ( a , b , c ) (x,y|q) t n ( q ; q ) n = 1 ( x t ; q ) 2 Φ 1 [ a , b ; c ; q ; y t ] ( max { | y t | , | x t | } < 1 ) ,
(1.10)
n = 0 ψ n ( a , b , c ) (x,y|q) ( 1 ) n q ( n 2 ) t n ( q ; q ) n = ( x t ; q ) 2 Φ 1 [ a , b ; c ; q ; y t ] ( | x t | < 1 ) .
(1.11)

Motivated by the work of Cao [7], the authors [12] introduced a new extension of the Al-Salam–Carlitz polynomials \(\phi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)\), \(\psi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)\),

$$\begin{aligned} &\phi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(a,b,c;q)_{k}}{(d,e;q)_{k}}x^{n-k}y^{k}, \end{aligned}$$
(1.12)
$$\begin{aligned} &\psi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(-1)^{k}q^{k(k-n)}(a,b,c;q)_{k}}{(d,e;q)_{k}}x^{n-k}y^{k}, \end{aligned}$$
(1.13)

and obtained the following results.

Proposition 1

([12, Theorem 4])

Let \(f(a,b,c,d,e,x,y)\) be a seven-variable analytic function in a neighborhood of \((a,b,c,d,e,x,y)=(0,0,0,0,0,0,0)\in \mathbb{C}^{7}\).

(I) \(f(a,b,c,d,e,x,y)\) can be expanded in terms of \(\phi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)\) if and only if

$$\begin{aligned} & x\bigl\{ f(a,b,c,d,e,x,y)-f(a,b,c,d,e,x,yq) \\ &\qquad{}-(d+e)q^{-1} \bigl[f(a,b,c,d,e,x,yq)-f\bigl(a,b,c,d,e,x,yq^{2}\bigr)\bigr] \\ &\qquad{} +deq^{-2}\bigl[f\bigl(a,b,c,d,e,x,yq^{2}\bigr)-f \bigl(a,b,c,d,e,x,yq^{3}\bigr)\bigr] \bigr\} \\ &\quad=y\bigl\{ \bigl[f(a,b,c,d,e,x,y)-f(a,b,c,d,e,xq,y)\bigr] \\ &\qquad{}-(a+b+c) \bigl[f(a,b,c,d,e,x,yq)-f(a,b,c,d,e,xq,yq)\bigr] \\ &\qquad{} +(ab+ac+bc)\bigl[f\bigl(a,b,c,d,e,x,yq^{2}\bigr)-f \bigl(a,b,c,d,e,xq,yq^{2}\bigr)\bigr] \\ &\qquad{} -abc\bigl[f\bigl(a,b,c,d,e,x,yq^{3}\bigr)-f\bigl(a,b,c,d,e,xq,yq^{3} \bigr)\bigr] \bigr\} . \end{aligned}$$
(1.14)

(II) \(f(a,b,c,d,e,x,y)\) can be expanded in terms of \(\psi _{n}^{\binom{a,b,c}{d,e}}(x,y|q)\) if and only if

$$\begin{aligned} & x\bigl\{ f(a,b,c,d,e,xq,y)-f(a,b,c,d,e,xq,yq) \\ &\qquad{}-(d+e)q^{-1} \bigl[f(a,b,c,d,e,xq,yq)-f\bigl(a,b,c,d,e,xq,yq^{2}\bigr)\bigr] \\ &\qquad{} +deq^{-2}\bigl[f\bigl(a,b,c,d,e,xq,yq^{2}\bigr)-f \bigl(a,b,c,d,e,xq,yq^{3}\bigr)\bigr] \bigr\} \\ &\quad=y\bigl\{ \bigl[f(a,b,c,d,e,xq,yq)-f(a,b,c,d,e,x,yq)\bigr] \\ &\qquad{}-(a+b+c)\bigl[f \bigl(a,b,c,d,e,xq,yq^{2}\bigr)-f\bigl(a,b,c,d,e,x,yq^{2} \bigr)\bigr] \\ &\qquad{} +(ab+ac+bc)\bigl[f\bigl(a,b,c,d,e,xq,yq^{3}\bigr)-f \bigl(a,b,c,d,e,x,yq^{3}\bigr)\bigr] \\ & \qquad{}-abc\bigl[f\bigl(a,b,c,d,e,xq,yq^{4}\bigr)-f\bigl(a,b,c,d,e,x,yq^{4} \bigr)\bigr] \bigr\} . \end{aligned}$$
(1.15)

Subsequently, Cao et al. [13], gave another extension of Al-Salam–Carlitz polynomials called “generalized Verma–Jain polynomials”,

$$\begin{aligned} &\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(a,b,c;q)_{k}}{(d,e;q)_{k}}P_{n-k}(x,y)z^{k}, \end{aligned}$$
(1.16)
$$\begin{aligned} &\mu _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{(a,b,c;q)_{k}}{(d,e;q)_{k}}P_{n-k}(y,x)z^{k} , \end{aligned}$$
(1.17)

where

$$\begin{aligned} P_{n}(x,y)=(x-y) (x-q y)...\bigl(x-q^{n-1}y \bigr)=(y/x;q)_{n} x^{n} \end{aligned}$$
(1.18)

are the Cauchy polynomials.

Remark 2

Upon setting \((y,z)=(0,y)\), the polynomial (1.16) reduces to (1.12).

Motivated by the recent work of Cao [7], Cao et al. [12, 13] and with the aid of the polynomials (1.17), we introduce the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\).

Definition 3

The q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) are defined by

$$\begin{aligned} \zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)&=\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{q^{\binom{k}{2}}(a,b,c;q)_{k}}{(d,e;q)_{k}}P_{n-k}(y,x) z^{k} . \end{aligned}$$
(1.19)

Remark 4

The q-polynomials (1.19) can be viewed as a general form of the Hahn polynomials.

  1. (1)

    Taking \(r=s=3, \mathbf{a}=(a,b,c)\) and \(\mathbf{b}=(d,e,0)\) in [29, Definition 1], the q-polynomials (1.19) is a special case of the generalized q-hypergeometric polynomials \(\Psi _{n}^{(\mathbf{a},\mathbf{b})}(x,y,z|q)\), i.e.,

    $$\begin{aligned} \zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)=(-1)^{n}q^{(\frac{n}{2})} \Psi _{n}^{({ \mathbf{a}},\mathbf{b})}(x,y,z|q). \end{aligned}$$
  2. (2)

    Upon setting \((y,z)=(0,y)\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) defined in (1.19) reduce to the polynomials \(\psi _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) [12],

    $$\begin{aligned} \zeta _{n}^{\binom{a,b,c}{d,e}}(x,0,y|q)=(-1)^{n}q^{-\binom{n}{2}} \psi _{n}^{\binom{a,b,c }{d,e}}(x,y|q). \end{aligned}$$
  3. (3)

    For \(b=c=d=e=0\) and \(z=-b\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) reduce to the generalized Hahn polynomials \(h_{n}(x,y,a,b|q)\) [30],

    $$\begin{aligned} \zeta _{n}^{\binom{a,0,0}{0,0}}(x,y,-b|q) = h_{n}(x,y,a,b|q). \end{aligned}$$
  4. (4)

    Setting \(a=b=c=d=e=0\) and \(z=-z\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) reduce to the trivariate q-polynomials \(F_{n}(x,y,z;q)\) [1],

    $$\begin{aligned} \zeta _{n}^{\binom{0,0,0}{0,0}}(x,y,-z|q) = (-1)^{n}q^{\binom{n}{2}}F_{n}(x,y,z;q). \end{aligned}$$
  5. (5)

    If we let \(a=b=c=d=e=0, y = ax\) and \(z=-y\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) reduce to \(\psi _{n}^{(a)}(x,y|q)\) [6],

    $$\begin{aligned} \zeta _{n}^{\binom{0,0,0}{0,0}}(x,ax,-y|q) = (-1)^{n}q^{\binom{n}{2}} \psi _{n}^{(a)}(x,y|q). \end{aligned}$$
  6. (6)

    For \(b=c=d=e=0, x=0, y=x\) and \(z=-y\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) reduce to the polynomials \(P_{n}(x,y,a)\) [3],

    $$\begin{aligned} \zeta _{n}^{\binom{a,0,0}{0,0}}(0,x,-y|q) = P_{n}(x,y,a). \end{aligned}$$
  7. (7)

    Also, \(a=b=c=d=e=0, y = ax\) and \(z=-1\), the q-polynomials \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) reduce to Hahn polynomials \(\psi _{n}^{(a)}(x|q)\) [2],

    $$\begin{aligned} \zeta _{n}^{\binom{0,0,0}{0,0}}(x,ax,-1|q) = (-1)^{n}q^{\binom{n}{2}} \psi _{n}^{(a)}(x|q). \end{aligned}$$

The paper is organized as follows. In Sect. 2, we give and prove our main results to be used in the sequel. In Sect. 3, we obtain generating function for q-polynomials. In Sect. 4, we obtain the Srivastava–Agarwal type generating function for q-hypergeometric polynomials. In Sect. 5, we deduce mixed generating functions for the Rajković–Marinković–Stanković polynomials. In Sect. 6, we derive \(U(n+1)\) generalizations of the generating functions for q-hypergeometric polynomials.

2 Proof of main results

In this section, we will give and prove our main results to be used in the sequel.

Theorem 5

Let \(f(a,b,c,d,e,x,y,z)\) be an eight-variable analytic function in a neighborhood of \((a,b,c,d,e,x,y,z)=(0,0,0,0,0,0,0,0)\in \mathbb{C}^{8}\).

(I) If \(f(a,b,c,d,e,x,y,z)\) can be expanded in terms of \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) if and only if

$$\begin{aligned} & \bigl(x-q^{-1}y\bigr) \bigl\{ \bigl[f(a,b,c,d,e,x,y,z)-f(a,b,c,d,e,x,y,qz) \bigr] \\ &\qquad{} -(d+e)q^{-1}\bigl[f(a,b,c,d,e,x,y,qz)-f\bigl(a,b,c,d,e,x,y,q^{2}z \bigr)\bigr] \\ &\qquad{}+deq^{-2}\bigl[f\bigl(a,b,c,d,e,x,y,q^{2}z\bigr)-f \bigl(a,b,c,d,e,x,y,q^{3}z\bigr)\bigr] \bigr\} \\ &\quad=z \bigl\{ \bigl[f\bigl(a,b,c,d,e,x,q^{-1}y,z\bigr)-f(a,b,c,,d,e,qx,y,z) \bigr] \\ &\qquad{} -(a+b+c) \bigl[f\bigl(a,b,c,d,e,x,q^{-1}y,qz \bigr)-f(a,b,c,d,e,qx,y,qz) \bigr] \\ &\qquad{}+(ab+ac+bc) \bigl[f\bigl(a,b,c,d,e,x,q^{-1}y,q^{2}z \bigr)-f\bigl(a,b,c,d,e,qx,y,q^{2}z\bigr)\bigr] \\ &\qquad{}-abc\bigl[f\bigl(a,b,c,d,e,x,q^{-1}y,q^{3}z\bigr)-f \bigl(a,b,c,d,e,qx,y,q^{3}z\bigr) \bigr] \bigr\} . \end{aligned}$$
(2.1)

(II) If \(f(a,b,c,d,e,x,y,z)\) can be expanded in terms of \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\) if and only if

$$\begin{aligned} & \bigl(q^{-1}x-y\bigr) \bigl\{ \bigl[f(a,b,c,d,e,x,y,z)-f(a,b,c,d,e,x,y,qz) \bigr] \\ &\qquad{}-(d+e)q^{-1}\bigl[f(a,b,c,d,e,x,y,qz)-f\bigl(a,b,c,d,e,x,y,q^{2}z \bigr)\bigr] \\ &\qquad{}+deq^{-2}\bigl[f\bigl(a,b,c,d,e,x,y,q^{2}z\bigr)-f \bigl(a,b,c,d,e,x,y,q^{3}z\bigr)\bigr] \bigr\} \\ &\quad=z \bigl\{ \bigl[f(a,b,c,d,e, x,qy,qz)-f\bigl(a,b,c,d,e,q^{-1}x,y,qz \bigr) \bigr] \\ &\qquad{}-(a+b+c) \bigl[f\bigl(a,b,c,d,e, x,qy,q^{2}z\bigr) \\ &\qquad{}-f\bigl(a,b,c,d,e,q^{-1}x,y,q^{2}z\bigr) \bigr] \\ &\qquad{}+(ab+ac+bc) \bigl[f\bigl(a,b,c,d,e, x,qy,q^{3}z\bigr)-f \bigl(a,b,c,d,e,q^{-1}x, y,q^{3}z\bigr)\bigr] \\ &\qquad{}-abc\bigl[f\bigl(a,b,c,d,e, x,qy,q^{4}z\bigr)-f \bigl(a,b,c,d,e,q^{-1}x, y,q^{4}z\bigr) \bigr] \bigr\} . \end{aligned}$$
(2.2)

Remark 6

For \((y,z)=(0,y)\), Eq. (2.1) reduces to (1.14).

To prove Theorem 5, we need the following lemmas.

Lemma 7

([17, Hartogs theorem])

If a complex-valued function is holomorphic (analytic) in each variable separately in an open domain \(D \in \mathbb{C}^{n}\), then it is holomorphic (analytic) in D.

Lemma 8

([20, Proposition 1])

If \(f(x_{1},x_{2},\ldots,x_{k})\) is analytic at the origin \((0,0,\ldots,0)\in \mathbb{C}^{k}\), then f can be expanded in an absolutely convergent power series,

$$\begin{aligned} f(x_{1},x_{2},\ldots,x_{k})=\sum _{n_{1},n_{2},\ldots,n_{k}=0}^{\infty }\alpha _{n_{1},n_{2},\ldots,n_{k}}x_{1}^{n_{1}}x_{2}^{n_{2}}...x_{k}^{n_{k}}. \end{aligned}$$

Proof of Theorem 5

(I) From Lemmas 7 and 8, we assume that there exists a sequence \(\{A_{n}\}\) such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }A_{n}(a,b,c,d,e,x,y)z^{n}. \end{aligned}$$
(2.3)

First, substituting (2.3) into Eq. (2.1), we have

$$\begin{aligned} &\bigl(x-q^{-1}y\bigr)\sum_{n=0}^{\infty } \bigl[1-q^{n}-(d+e)q^{n-1}+(d+e)q^{2n-1}+deq^{2n-2}-deq^{3n-2} \bigr]\\ &\qquad{}\times A_{n}(a,b,c,d,e,x,y)z^{n} \\ &\quad=\sum_{n=0}^{\infty }\bigl[1-(a+b+c)q^{n}+(ab+bc+ac)q^{2n}-abcq^{3n} \bigr]\\ &\qquad{}\times \bigl[A_{n}\bigl(a,b,c,d,e,x,q^{-1}y \bigr)-A_{n}(a,b,c,d,e,qx,y)\bigr]z^{n+1}, \end{aligned}$$

which is equal to

$$\begin{aligned} & \bigl(x-q^{-1}y\bigr)\sum_{n=0}^{\infty } \bigl(1-q^{n}\bigr) \bigl(1-dq^{n-1}\bigr) \bigl(1-eq^{n-1} \bigr)A_{n}(a,b,c,d,e,x,y)z^{n} \\ &\quad=\sum_{n=0}^{\infty }\bigl(1-aq^{n} \bigr) \bigl(1-bq^{n}\bigr) \bigl(1-cq^{n}\bigr) \\ &\qquad{}\times \bigl[A_{n}\bigl(a,b,c,d,e,x,q^{-1}y\bigr)-A_{n}(a,b,c,d,e,qx,y) \bigr]z^{n+1}. \end{aligned}$$
(2.4)

Comparing coefficients of \(z^{n} n\geq 1\), on both sides of Eq. (2.4), we readily find that

$$\begin{aligned} &\bigl(x-q^{-1}y\bigr) \bigl(1-q^{n}\bigr) \bigl(1-dq^{n-1}\bigr) \bigl(1-eq^{n-1}\bigr)A_{n}(a,b,c,d,e,x,y) \\ & \quad=\bigl(1-aq^{n-1}\bigr) \bigl(1-bq^{n-1}\bigr) \bigl(1-cq^{n-1}\bigr) \\ &\qquad{}\times\bigl[A_{n-1}\bigl(a,b,c,d,e,x,q^{-1}y \bigr)-A_{n-1}(a,b,c,d,e,qx,y) \bigr], \end{aligned}$$

which is equivalent to

$$\begin{aligned} A_{n}(a,b,c,d,e,x,y)= \frac{(1-aq^{n-1})(1-bq^{n-1})(1-cq^{n-1})}{(1-q^{n})(1-dq^{n-1})(1-eq^{n-1})}D_{xy}{A_{n-1}(a,b,c,d,e,x,y)}. \end{aligned}$$

By iteration, we obtain

$$\begin{aligned} A_{n}(a,b,c,d,e,x,y)=\frac{(a,b,c;q)_{n}}{(q,d,e;q)_{n}}D_{xy}^{n} \bigl\{ A_{0}(a,b,c,d,e,x,y) \bigr\} . \end{aligned}$$
(2.5)

Taking \(f(a,b,c,d,e,x,y,0)=A_{0}(a,b,c,d,e,x,y)=\sum_{n=0}^{\infty }\beta _{n}P_{n}(x,y)\) yields

$$\begin{aligned} A_{k}(a,b,c,d,e,x,y)=\frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}}\cdot \sum _{n=0}^{\infty }\beta _{n} \frac{(q;q)_{n}}{(q;q)_{n-k}}P_{n-k}(x,y), \end{aligned}$$
(2.6)

and we have

$$\begin{aligned} f(a,b,c,d,e,x,y,z)&=\sum_{k=0}^{\infty } \frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}}\sum_{n=0}^{\infty }\beta _{n} \frac{(q;q)_{n}}{(q;q)_{n-k}}P_{n-k}(x,y)z^{k} \\ &=\sum_{n=0}^{\infty }\beta _{n}\sum _{k=0}^{\infty } \begin{bmatrix} n \\ k \end{bmatrix}_{q}\frac{(a,b,c;q)_{k}}{(d,e;q)_{k}}P_{n-k}(x,y)z^{k} \\ &=\sum_{n=0}^{\infty }\beta _{n}\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q). \end{aligned}$$

Second, if \(f(a,b,c,d,e,x,y,z)\) can be expanded in terms of \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\), we can verify that it satisfies (2.1).

In almost the same way, we assume that there exists a sequence \(\{B_{n}\}\) such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }B_{n}(a,b,c,d,e,x,y)z^{n}. \end{aligned}$$
(2.7)

Now, substituting Eq. (2.7) into Eq. (2.2), we have

$$\begin{aligned} &\bigl(q^{-1}x- y\bigr)\sum_{n=0}^{\infty } \bigl[1-q^{n}-(d+e)q^{n-1}+(d+e)q^{2n-1}+deq^{2n-2}-deq^{3n-2} \bigr] \\ &\qquad{}\times B_{n}(a,b,c,d,e,x,y)z^{n} \\ &\quad=\sum_{n=0}^{\infty }\bigl[q^{n}-(a+b+c)q^{2n}+(ab+bc+ac)q^{3n}-abcq^{4n} \bigr] \\ &\qquad{}\times\bigl[B_{n}(a,b,c,d,e,x,qy)-B_{n}\bigl(a,b,c,d,e,q^{-1}x,y \bigr)\bigr]z^{n+1}, \end{aligned}$$

which is equal to

$$\begin{aligned} &\bigl(q^{-1}x- y\bigr)\sum _{n=0}^{\infty }\bigl(1-q^{n}\bigr) \bigl(1-dq^{n-1}\bigr) \bigl(1-eq^{n-1}\bigr)B_{n}(a,b,c,d,e,x,y)z^{n} \\ &\quad=\sum_{n=0}^{\infty }q^{n} \bigl(1-aq^{n}\bigr) \bigl(1-bq^{n}\bigr) \bigl(1-cq^{n}\bigr) \\ &\qquad{}\times\bigl[B_{n}(a,b,c,d,e,x,qy)-B_{n} \bigl(a,b,c,d,e,q^{-1}x,y\bigr)\bigr]z^{n+1}. \end{aligned}$$
(2.8)

Comparing coefficients of \(z^{n} n\geq 1\), on both sides of Eq. (2.8), we readily find that

$$\begin{aligned} &\bigl(q^{-1}x- y\bigr) \bigl(1-q^{n}\bigr) \bigl(1-dq^{n-1}\bigr) \bigl(1-eq^{n-1}\bigr)B_{n}(a,b,c,d,e,x,y) \\ & \quad=q^{n-1}\bigl(1-aq^{n-1}\bigr) \bigl(1-bq^{n-1}\bigr) \bigl(1-cq^{n-1}\bigr) \\ &\qquad{}\times\bigl[B_{n-1}(a,b,c,d,e,x,qy)-B_{n-1} \bigl(a,b,c,d,e,q^{-1}x,y\bigr) \bigr], \end{aligned}$$

which is equivalent to

$$\begin{aligned} B_{n}(a,b,c,d,e,x,y)=-q^{n-1} \frac{(1-aq^{n-1})(1-bq^{n-1})(1-cq^{n-1})}{(1-q^{n})(1-dq^{n-1})(1-eq^{n-1})} \theta _{xy}{B_{n-1}(a,b,c,d,e,x,y)}. \end{aligned}$$

By iteration, we obtain

$$\begin{aligned} B_{n}(a,b,c,d,e,x,y)= \frac{(-1)^{n}q^{\binom{n}{2}}(a,b,c;q)_{n}}{(q,d,e;q)_{n}}\theta _{xy}^{n} \bigl\{ B_{0}(a,b,c,d,e,x,y)\bigr\} . \end{aligned}$$
(2.9)

Upon setting \(f(a,b,c,d,e,x,y,0)=B_{0}(a,b,c,d,e,x,y)=\sum_{n=0}^{\infty }\beta _{n}P_{n}(y,x)\),

$$\begin{aligned} B_{k}(a,b,c,d,e,x,y)= \frac{q^{\binom{k}{2}}(a,b,c;q)_{k}}{(q,d,e;q)_{k}}\cdot \sum _{n=0}^{\infty }\beta _{n} \frac{(q;q)_{n}}{(q;q)_{n-k}}P_{n-k}(y,x), \end{aligned}$$
(2.10)

we have

$$\begin{aligned} f(a,b,c,d,e,x,y,z)&=\sum_{k=0}^{\infty } \frac{q^{\binom{k}{2}}(a,b,c;q)_{k}}{(q,d,e;q)_{k}}\sum_{n=0}^{\infty }\beta _{n}\frac{(q;q)_{n}}{(q;q)_{n-k}}P_{n-k}(x,y)z^{k} \\ &=\sum_{n=0}^{\infty }\beta _{n}\sum _{k=0}^{\infty } \begin{bmatrix} n \\ k \end{bmatrix}_{q}\frac{q^{\binom{k}{2}}(a,b,c;q)_{k}}{(d,e;q)_{k}}P_{n-k}(x,y)z^{k} \\ &=\sum_{n=0}^{\infty }\beta _{n}\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q). \end{aligned}$$

Finally, if \(f(a,b,c,d,e,x,y,z)\) can be written in terms of \(\zeta _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q)\), we can verify that \(f(a,b,c,d,e,x,y,z)\) satisfies (2.2). The proof of Theorem 5 is complete. □

3 Generating function for new generalized q-polynomials

In this section, our aim is to give and prove the generating functions for q-polynomials by means of the q-difference equations.

Theorem 9

It is asserted that

n = 0 ω n ( a , b , c d , e ) (x,y,z|q) t n ( q ; q ) n = ( y t ; q ) ( x t ; q ) 3 Φ 2 [ a , b , c ; d , e ; q ; z t ] ( max { | x t | , | z t | } < 1 )
(3.1)

and

n = 0 ζ n ( a , b , c d , e ) (x,y,z|q) t n ( q ; q ) n = ( x t ; q ) ( y t ; q ) 3 Φ 3 [ a , b , c ; 0 , d , e ; q ; z t ] ( | y t | < 1 ) .
(3.2)

Remark 10

Equations (3.1) and (3.2) reduce to Eqs. (1.10) and (1.11), respectively, when \(c=e=y=0\) in Theorem 9.

Proof of Theorem 9

We denote the right-hand side of Eq. (3.1) by \(f(a,b,c,d,e,x,y,z)\). One can verify that \(f(a,b,c,d,e,x,y,z)\) satisfies (2.1). So, there exists a sequence \(\{\beta _{n}\}\), such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }\beta _{n}\omega _{n}^{\binom{a,b,c }{d,e}}(x,y,z|q). \end{aligned}$$
(3.3)

Upon setting \(z=0\) in Eq. (3.3) and then using the obvious fact \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,0|q)=P_{n}(x,y)\), we have

$$\begin{aligned} f(a,b,c,d,e,x,y,0)=\sum_{n=0}^{\infty }\beta _{n} P_{n}(x,y)= \frac{(yt;q)_{\infty }}{(xt;q)_{\infty }}=\sum _{n=0}^{\infty }P_{n}(x,y) \frac{t^{n}}{(q;q)_{n}}. \end{aligned}$$

So, the function \(f(a,b,c,d,e,x,y,z)\) is equivalent to

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty } \frac{t^{n}}{(q;q)_{n}}\omega _{n}^{\binom{a,b,c }{d,e}}(x,y,z|q), \end{aligned}$$

which equals the right-hand side of Eq. (3.1). Similarly, we prove Eq. (3.2).

The proof of Theorem 9 is complete. □

4 Srivastava–Agarwal type generating function for q-hypergeometric polynomials

We recall that the following Srivastava–Agarwal type generating functions for the Al-Salam–Carlitz polynomials. See also [10, 19] for some recent work on generating functions.

Proposition 11

([27, Eq. (3.20)] and [5, Eq. (5.4)])

We have

n = 0 ϕ n ( α ) (z|q) ( λ ; q ) n t n ( q ; q ) n = ( λ t ; q ) ( t ; q ) 2 Φ 1 [ λ , α ; λ t ; q ; z t ] ( max { | t | , | x t | } < 1 )
(4.1)

and

$$\begin{aligned} & \sum_{n=0}^{\infty }\psi _{n}^{(\alpha )}(x|q) (1/\lambda;q)_{n} \frac{ (\lambda tq)^{n}}{(q;q)_{n}} = \frac{(xtq; q)_{\infty }}{(\lambda xtq;q)_{\infty }} {}_{2}\Phi _{1}\left [ \textstyle\begin{array}{rr} 1/ \lambda,1/ (\alpha x); \\ 1/(\lambda xt); \end{array}\displaystyle q; \alpha q \right ] \\ &\quad\bigl(\max \bigl\{ \vert \lambda x tq \vert , \vert \alpha q \vert \bigr\} < 1 \bigr). \end{aligned}$$
(4.2)

In this section, we state and prove the Srivastava–Agarwal type bilinear generating functions for q-hypergeometric polynomials by the method of homogeneous q-difference equations.

Theorem 12

It is asserted that

n = 0 ϕ n ( α ) ( x | q ) ω n ( a , b , c d , e ) ( u , v , z | q ) t n ( q ; q ) n = ( v t , α x ; q ) ( u t , x ; q ) k = 0 ( u t , α ; q ) k q k ( q / x , v t , q ; q ) k 3 Φ 2 [ a , b , c ; d , e ; q ; z t q k ] ( max { | u t | , | z t | , | x | } < 1 )
(4.3)

and

n = 0 ψ n ( α ) ( x | q ) ζ n ( a , b , c d , e ) ( u , v , z | q ) t n ( q ; q ) n = ( q / x , u x t q ; q ) ( α q , v x t q ; q ) × n = 0 ( 1 ) n q ( n 2 ) ( 1 / ( α x ) , 1 / ( u x t ) ; q ) n ( q / x , 1 / ( v x t ) , q ; q ) n ( α u q v ) n 3 Φ 3 [ a , b , c ; 0 , d , e ; q ; z x t q 1 n ] ( max { | α q | , | v x t | } < 1 ) .
(4.4)

Remark 13

For \(c=e=0, b=d\) and \(y=0,x=1\) in Theorem 12, Eq. (4.3) reduces to (4.1)

To prove Theorem 12, the following proposition is necessary.

Proposition 14

([4, Theorem 5.2] and [16, Eq. (III.4)])

We have

$$\begin{aligned} {}_{2}\Phi _{1}\left [ \textstyle\begin{array}{rr} a, b; \\ c; \end{array}\displaystyle q; z \right ] = \frac{ (abz/c;q)_{\infty }}{ (az/c;q)_{\infty }} {}_{3}\Phi _{2}\left [ \textstyle\begin{array}{r} b, c/a,0; \\ qc/(az),c; \end{array}\displaystyle q; q \right ] \end{aligned}$$
(4.5)

and

$$\begin{aligned} {}_{2}\Phi _{1}\left [ \textstyle\begin{array}{rr} a, b; \\ c; \end{array}\displaystyle q; z \right ]= \frac{ (bz; q)_{\infty }}{ (z;q)_{\infty }} {}_{2} \Phi _{2}\left [ \textstyle\begin{array}{rr} b,c/a; \\ bz,c; \end{array}\displaystyle q; az \right ]. \end{aligned}$$
(4.6)

Proof of Theorem 12

If we use \(f(a,b,c,d,e,x,y,z)\) to denote the right-hand side of (4.3), we calculate that \(f(a,b,c,d,e,x,y,z)\) satisfies (2.1). Thus, there exists a sequence \(\{a_{n}\}\) independent of \(x, y\) and z such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }a_{n} {}\omega _{n}^{\binom{a,b,c }{d,e}}(u,v,z|q). \end{aligned}$$
(4.7)

Letting \(z=0\) in Eq. (4.7) and utilizing the obvious fact \(\omega _{n}^{\binom{a,b,c}{d,e}}(u,v,0|q)=P_{n}(u,v)\), we have

f ( a , b , c , d , e , u , v , 0 ) = n = 0 a n P n ( u , v ) = ( v t , α x ; q ) ( u t , x ; q ) k = 0 ( u t , α ; q ) k q k ( q / x , v t , q ; q ) k = ( v t , α x ; q ) ( u t , x ; q ) 3 Φ 2 [ u t , α , 0 ; q / x , v t ; q ; q ] by (4.5) = ( v t ; q ) ( u t ; q ) 2 Φ 1 [ v / u , α ; v t ; q ; x u t ] = n = 0 ϕ n ( α ) ( x ) P n ( u , v ) t n ( q ; q ) n .

Hence

$$\begin{aligned} f(a,b,c,d,e,u,v,z)=\sum_{n=0}^{\infty }\phi _{n}^{(\alpha )}(x)\omega _{n}^{\binom{a,b,c }{d,e}}(u,v,z|q) \frac{ t^{n}}{(q;q)_{n}}, \end{aligned}$$

which is equal to the left-hand side of (4.3).

Similarly, if we use \(f(a,b,c,d,e,x,y,z)\) to denote the right-hand side of (4.4), we test that \(g(a,b,c,d,e,x,y,z)\) satisfies (2.2). Thus, there exists a sequence \(\{b_{n}\}\) independent of \(x, y\) and z such that

$$\begin{aligned} g(a,b,c,d,e,u,v,z)=\sum_{n=0}^{\infty }b_{n} {}\zeta _{n}^{\binom{a,b,c }{d,e}}(u,v,z|q). \end{aligned}$$
(4.8)

Setting \(z=0\) in Eq. (4.8), using the obvious fact \(\zeta _{n}^{\binom{a,b,c}{d,e}}(u,v,0|q)=P_{n}(v,u)\), we have

g ( a , b , c , d , e , u , v , 0 ) = n = 0 b n P n ( v , u ) = ( q / x , u x t q ; q ) ( α q , v x t q ; q ) n = 0 ( 1 ) n q ( n 2 ) ( 1 / ( α x ) , 1 / ( u x t ) ; q ) n ( q / x , 1 / ( v x t ) , q ; q ) n ( α u q v ) n = ( q / x , u x t q ; q ) ( α q , v x t q ; q ) 2 Φ 2 [ 1 / ( α x ) , 1 / ( u x t ) ; q / x , 1 / ( v x t ) ; q ; α u q v ] by (4.6) = ( u x t q ; q ) ( v x t q ; q ) 2 Φ 2 [ u / v , 1 / ( α x ) ; 1 / ( v x t ) ; q ; α q ] = n = 0 ψ n ( α ) ( x | q ) P n ( v , u ) ( q t ) n ( q ; q ) n .

Hence

$$\begin{aligned} g(a,b,c,d,e,u,v,z)=\sum_{n=0}^{\infty }\psi _{n}^{(\alpha )}(x)\zeta _{n}^{\binom{a,b,c }{d,e}}(u,v,z|q) \frac{ (qt)^{n}}{(q;q)_{n}}, \end{aligned}$$

which is equal to the left-hand side of (2.2). This completes the proof of Theorem 12. □

Theorem 15

For \(s\in \mathbb{N}\), we have

n = 0 ω n + s ( a , b , c d , e ) ( x , y , z | q ) t n ( q ; q ) n = ( y t ; q ) t s ( x t ; q ) k = 0 s ( q s , x t ; q ) k q k ( q ; y t ; q ) k 3 Φ 2 [ a , b , c ; d , e ; q ; z t q k ] ( max { | x t | , | z t | } < 1 )
(4.9)

and

n = 0 ζ n + s ( a , b , c d , e ) ( x , y , z | q ) t n ( q ; q ) n = ( x t ; q ) t s ( y t ; q ) k = 0 s ( q s , y t ; q ) k q k ( q ; x t ; q ) k 3 Φ 3 [ a , b , c ; d , e , 0 ; q ; z t q k ] ( | y t | < 1 ) .
(4.10)

Corollary 16

([35, Eq. (2.1)])

For \(s\in \mathbb{N}\) and \(\max \{|z|,|xz|,|b|\}<1\), we have

n = 0 Ω n + s (x;a,b|q) z n ( q ; q ) n = ( b , a x z , b z q s ; q ) ( z , x z , b q s ; q ) 3 Φ 2 [ q s , a , x ; a x z , q 1 s / b ; q ; q x b ] .
(4.11)

Remark 17

For \(c=e=0, b=d\) and \(x=1\) in Theorem 15, Eq. (4.9) reduces to (4.11).

To prove Theorem 15, we need the following lemma.

Lemma 18

([16, Eq. (II.6)])

The q-Chu–Vandermonde formula is given by

$$\begin{aligned} {}_{2}\Phi _{1}\left [ \textstyle\begin{array}{rr} q^{-n}, a; \\ c; \end{array}\displaystyle q; q \right ]=\frac{(c/a;q)_{n}}{(c;q)_{n}} a^{n} \quad\bigl(n\in \mathbb{N}_{0}:=\mathbb{N}\cup \{0\}\bigr). \end{aligned}$$
(4.12)

Proof of Theorem 15

If we denote the right-hand side of Eq. (4.9) equivalently by

f(a,b,c,d,e,x,y,z)= t s k = 0 s ( q s ; q ) k q k ( q ; q ) k ( y t q k ; q ) ( x t q k ; q ) 3 Φ 2 [ a , b , c ; d , e ; q ; z t q k ] ,

we test that \(f(a,b,c,d,e,x,y,z)\) satisfies Eq. (2.1). Thus, there exists a sequence \(\{\alpha _{n}\}\) independent of \(x, y\) and z such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }\alpha _{n} \omega _{n}^{\binom{a,b,c }{d,e}}(x,y,z|q). \end{aligned}$$

We set \(z=0\) in the above equation, using the notable fact \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,0|q)=P_{n}(x,y)\), we have

f ( a , b , c , d , e , x , y , 0 ) = n = 0 β n P n ( x , y ) = ( y t ; q ) t s ( x t ; q ) 2 Φ 1 [ q s , x t ; y t ; q ; q ] by (4.12) = ( y t q s ; q ) P s ( x , y ) ( x t ; q ) = n = 0 P n + s ( x , y ) t n ( q ; q ) n = n = s P n ( x , y ) t n s ( q ; q ) n s .

We immediately conclude that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q) \frac{t^{n-s}}{(q;q)_{n-s}}=\sum _{n=0}^{\infty }\omega _{n+s}^{\binom{a,b,c }{d,e}}(x,y,z|q) \frac{t^{n}}{(q;q)_{n}}, \end{aligned}$$

which is equal to the left-hand side of (4.9).

Similarly, we get (4.10). This completes the proof of Theorem 15. □

5 Some new mixed generating functions for the Rajković–Marinković–Stanković polynomials

In this section, we give and prove the mixed generating functions for the Rajković–Marinković–Stanković polynomials.

Let a and b be two real numbers, the Thomae–Jackson q-integral is defined as [16, 18, 34]

$$\begin{aligned} \int _{a}^{b}f(x)\,\mathrm {d}_{q}x=(1-q) \sum_{n=0}^{\infty } \bigl[bf\bigl(bq^{n} \bigr)-af\bigl(aq^{n}\bigr) \bigr]q^{n}. \end{aligned}$$
(5.1)

Assume that \(\alpha \in \mathbb{R}^{+}\) and \(0< a< x<1\), the generalized Riemann–Liouville fractional q-integral operator is defined by [22] (see [11])

$$\begin{aligned} \bigl(I_{q,a}^{\alpha }f \bigr) (x)= \frac{x^{\alpha -1}}{\Gamma _{q}(\alpha )} \int _{a}^{x} (qt/x;q )_{\alpha -1}f(t)\,\mathrm {d}_{q}t. \end{aligned}$$
(5.2)

Due to the q-integral (5.1), we rewrite fractional q-integral (5.2) equivalently as follows (see [9, 11, 14]):

$$\begin{aligned} \bigl(I_{q,a}^{\alpha }f \bigr) (x)&= \frac{x^{\alpha -1}(1-q)}{\Gamma _{q}(\alpha )} \sum_{n=0}^{\infty } \bigl[x \bigl(q^{n+1};q \bigr)_{\alpha -1}f \bigl(xq^{n} \bigr) -a \bigl(aq^{n+1}/x;q \bigr)_{\alpha -1}f \bigl(aq^{n} \bigr) \bigr]q^{n}. \end{aligned}$$
(5.3)

Recall that the Rajković–Marinković–Stanković polynomials are defined [22] (see [8, 11]) by

$$\begin{aligned} \mathcal{P}_{n}(\alpha,a,x|q)=I^{\alpha }_{q,a} \bigl\{ x^{n} \bigr\} = \sum_{k=0}^{\infty } \begin{bmatrix} n \\ k \end{bmatrix}_{q} \frac{[k]_{q}! a^{n-k}}{\Gamma _{q}(\alpha +k+1)} x^{\alpha +k}(a/x;q)_{ \alpha +k}, \end{aligned}$$
(5.4)

where \(\alpha \in \mathbb{R}^{\ast }\) and \(0< a< x<1\).

We have the following lemmas.

Lemma 19

([8, Lemma 10])

For \(\alpha \in \mathbb{R}^{+}, 0< a< x<1\), we have

$$\begin{aligned} \sum_{n=0}^{\infty } \mathcal{P}_{n}(\alpha,a,x|q) \frac{w^{n}}{(q;q)_{n}}=\frac{(1-q)^{\alpha }}{(aw;q)_{\infty }}\sum _{k=0}^{\infty }\frac{x^{\alpha +k}(a/x;q)_{\alpha +k}w^{k}}{(q;q)_{\alpha +k}}. \end{aligned}$$
(5.5)

Lemma 20

([8, Theorem 3])

For \(\alpha \in \mathbb{R}^{+}, 0< a< x<1\) and if \(\max \{ |at|,|az| \} <1\), we have

I q , a α { ( b x z , t x ; q ) ( x s , x z ; q ) } = ( 1 q ) α ( a b z , a t ; q ) ( a s , a z ; q ) k = 0 x α + k ( a / x ; q ) α + k a k ( q ; q ) α + k 3 Φ 2 [ q k , a s , a z ; a t , a b z ; q ; q ] .
(5.6)

Remark 21

Upon taking \(z=0\) in (5.6) and by the means of the q-Chu–Vandermonde formula (4.12), we obtain

$$\begin{aligned} I^{\alpha }_{q,a} \biggl\{ \frac{(xt;q)_{\infty }}{(xs;q)_{\infty }} \biggr\} = \frac{(1-q)^{\alpha }(at;q)_{\infty }}{(as;q)_{\infty }}\sum_{k=0}^{\infty } \frac{x^{\alpha +k}(a/x;q)_{\alpha +k}}{(q;q)_{\alpha +k}} \frac{(t/s;q)_{k} s^{k}}{(at;q)_{k}},\quad \vert as \vert < 1. \end{aligned}$$
(5.7)

Using Lemma 20 and the theory of q-difference equations, we are able to deduce the following new mixed generating functions for the Rajković–Marinković–Stanković polynomials.

Theorem 22

For \(\alpha \in \mathbb{R}^{+},0< a< x<1\), and \(\max \{ |aws|,|awt| \} <1\), we have

n = 0 P n ( α , a , x | q ) ω n ( a 1 , b 1 , c 1 d 1 , e 1 ) ( s , t , r | q ) w n ( q ; q ) n = ( 1 q ) α ( a w t ; q ) ( a w s ; q ) n = 0 ( a 1 , b 1 , c 1 , a w t ; q ) n ( r / s ) n ( q , d 1 , e 1 , t / s ; q ) n k = 0 n ( q n , a w s ; q ) k q k ( q , a w t ; q ) k × m = 0 x α + m ( a / x ; q ) α + m a m ( q ; q ) α + m 3 Φ 2 [ q m , a w s q k , a w t q n ; a w t , a w t q k ; q ; q ]
(5.8)

and

n = 0 P n ( α , a , x | q ) ζ n ( a 1 , b 1 , c 1 d 1 , e 1 ) ( s , t , r | q ) w n ( q ; q ) n = ( 1 q ) α ( a w s ; q ) ( a w t ; q ) n = 0 q ( n 2 ) ( a 1 , b 1 , c 1 , a w s ; q ) n ( r / t ) n ( q , d 1 , e 1 , s / t ; q ) n k = 0 n ( q n , a w t ; q ) k q k ( q , a w s ; q ) k × m = 0 x α + m ( a / x ; q ) α + m a m ( q ; q ) α + m 3 Φ 2 [ q m , a w t q k , a w s q n ; a w s , a w s q k ; q ; q ] .
(5.9)

Proof of Theorem 22

The LHS of Eq. (5.8) is equal to

I q , a α { n = 0 ω n ( a 1 , b 1 , c 1 d 1 , e 1 ) ( s , t , r | q ) ( x w ) n ( q ; q ) n } = I q , a α { ( x w t ; q ) x w s ; q 3 Φ 2 [ a 1 , b 1 , c 1 ; d 1 , e 1 ; q ; r x w ] } = I q , a α { ( x w t ; q ) x w s ; q n = 0 ( a 1 , b 1 , c 1 ; q ) n ( q , d 1 , e 1 ; q ) n ( r w ) n x n } = I q , a α { ( x w t ; q ) x w s ; q n = 0 ( a 1 , b 1 , c 1 ; q ) n ( r w ) n ( q , d 1 , e 1 ; q ) n ( x w t ; q ) n ( t / s ; q ) n ( w s ) n k = 0 n ( q n , x w s ; q ) k ( q , x w t ; q ) k q k } = I q , a α { n = 0 ( a 1 , b 1 , c 1 ; q ) n ( q , d 1 , e 1 ; q ) n ( r / s ) n ( x w t ; q ) n ( t / s ; q ) n k = 0 n ( x w t q k ; q ) ( q n ; q ) k ( x w s q k ; q ) ( q ; q ) k q k } = n = 0 ( a 1 , b 1 , c 1 ; q ) n ( q , d 1 , e 1 ; q ) n ( r / s ) n ( t / s ; q ) n k = 0 n ( q n ; q ) k q k ( q ; q ) k I q , a α { ( x w t , x w t q k ; q ) ( x w t q n , x w s q k ; q ) } = ( 1 q ) α ( a w t ; q ) ( a w s ; q ) n = 0 ( a 1 , b 1 , c 1 , a w t ; q ) n ( r / s ) n ( q , d 1 , e 1 , t / s ; q ) n k = 0 n ( q n , a w s ; q ) k q k ( q , a w t ; q ) k × m = 0 x α + m ( a / x ; q ) α + m a m ( q ; q ) α + m 3 Φ 2 [ q m , a w s q k , a w t q n ; a w t , a w t q k ; q ; q ] ,

which equals the RHS of Eq. (5.8) after using (5.6). Similarly, we get (5.9). This completes the proof of Theorem 22. □

Remark 23

For \((t,r)=(0,0)\) in Theorem 22, we get (5.5).

6 The \(U(n+1)\) generalizations of generating functions for q-hypergeometric polynomials

Lemma 24

([21, Theorem 5.42])

Let \(b,z\) and \(x_{1},\ldots,x_{n}\) be indeterminate, and let \(n\geq 1\). Suppose that none of the denominators in the following identity vanishes, \(0<|q|<1\) and \(|z|<|x_{1},\ldots,x_{n}||x_{m}|^{-n}|q|^{(n-1)/2}\), for \(m=1,2,\ldots,n\). Then we have

$$\begin{aligned} &\mathop{\sum_{y_{k} \geq 0}}_{ k=1,2,\ldots,n} \Biggl\{ \prod _{1\leq r< s\leq n} \biggl[ \frac{1-\frac{x_{r}}{x_{s}}q^{y_{r}-y_{s}})}{1-\frac{x_{r}}{x_{s}}} \biggr]\prod _{r,s=1}^{n} \biggl(q\frac{x_{r}}{x_{s}};q \biggr)^{-1}_{y_{r}} \prod_{i=1}^{n}(x_{i})^{ny_{i}-(y_{1}+\cdots+y_{n})}(-1)^{(n-1)(y_{1}+\cdots+y_{n})} \\ &\qquad{} \times q^{y_{2}+2y_{3}+\cdots+(n-1)y_{n}+(n-1) [\binom{y_{1}}{2}+\cdots+\binom{y_{n}}{2} ]-e_{2}(y_{1},\ldots,y_{n})}(b;q)_{y_{1}+\cdots+y_{n}}z^{y_{1}+\cdots+y_{n}} \Biggr\} \\ & \quad= \frac{(bz;q)_{\infty }}{(z;q)_{\infty }}, \end{aligned}$$
(6.1)

where \(e_{2}(y_{1},\ldots,y_{n})\) is the second elementary symmetric function of \(\{y_{1},\ldots,y_{n}\}\).

In this part, using the method of homogeneous q-difference equations, we derive the following \(U(n+1)\) type generating functions for q-hypergeometric polynomials.

Theorem 25

Let \(b, z, x_{1},\ldots x_{n}, n\geq 1\) be indeterminate. Suppose that none of the denominators in the following identity vanishes, and that \(0<|q|<1\), and \(|z|<|x_{1},\ldots,x_{n}|\times |x_{m}|^{-n}|q|^{(n-1)/2}\), for \(m=1,2,\ldots,n\). Then we have the following:

y k 0 k = 1 , 2 , , n { 1 r < s n [ 1 x r x s q y r y s ) 1 x r x s ] r , s = 1 n ( q x r x s ; q ) y r 1 i = 1 n ( x i ) n y i ( y 1 + + y n ) ( 1 ) ( n 1 ) ( y 1 + + y n ) × q y 2 + 2 y 3 + + ( n 1 ) y n + ( n 1 ) [ ( y 1 2 ) + + ( y n 2 ) ] e 2 ( y 1 , , y n ) ω s + y 1 + + y n ( a , b , c d , e ) ( x , y , z | q ) t y 1 + + y n } = ( y t ; q ) t s ( x t ; q ) k = 0 s ( q s , x t ; q ) k q k ( q , y t ; q ) k 3 Φ 2 [ a , b , c ; d , e ; q ; z t q k ] ,
(6.2)

where \(a=q^{-M}\) and \(|xt|<1\).

Remark 26

Setting \(n=1\) in Theorem 25, the assertion (6.2) reduces to (4.9).

Proof of Theorem 25

Upon taking \((b,z)=(yq^{s}/x,xt)\) in Eq. (6.1), we obtain

$$\begin{aligned} &\mathop{\sum_{y_{k} \geq 0}}_{ k=1,2,\ldots,n} \Biggl\{ \prod _{1\leq r< s\leq n} \biggl[ \frac{1-\frac{x_{r}}{x_{s}}q^{y_{r}-y_{s}})}{1-\frac{x_{r}}{x_{s}}} \biggr]\prod _{r,s=1}^{n} \biggl(q\frac{x_{r}}{x_{s}};q \biggr)^{-1}_{y_{r}} \prod_{i=1}^{n}(x_{i})^{ny_{i}-(y_{1}+\cdots+y_{n})}(-1)^{(n-1)(y_{1}+\cdots+y_{n})} \\ &\qquad{} \times q^{y_{2}+2y_{3}+\cdots+(n-1)y_{n}+(n-1) [\binom{y_{1}}{2}+\cdots+\binom{y_{n}}{2} ]-e_{2}(y_{1},\ldots,y_{n})}P_{s+y_{1}+\cdots+y_{n}}\bigl(x,yq^{s} \bigr)t^{y_{1}+\cdots+y_{n}} \Biggr\} \\ &\quad = \frac{(ytq^{s};q)_{\infty }}{(xt;q)_{\infty }}. \end{aligned}$$
(6.3)

If we use \(f(a,b,c,d,e,x,y,z)\) to denote the left-hand side of Eq. (6.2), we can verify that \(f(a,b,c,d,e,x,y,z)\) satisfies Eq. (2.1). There exists a sequence \(\{\beta _{n}\}\) such that

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }\beta _{n}{}\omega _{n}^{\binom{a,b,c }{d,e}}(x,y,z|q). \end{aligned}$$
(6.4)

Setting \(z=0\) in Eq. (6.4) and then, using the obvious fact \(\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,0|q)=P_{n}(x,y)\), we have

$$\begin{aligned} &f(a,b,c,d,e,x,y,0)\\ &\quad=\sum_{n=0}^{\infty }\beta _{n} P_{n}(x,y) \\ &\quad=\mathop{\sum_{y_{k} \geq 0}}_{ k=1,2,\ldots,n} \Biggl\{ \prod _{1\leq r< s\leq n} \biggl[ \frac{1-\frac{x_{r}}{x_{s}}q^{y_{r}-y_{s}})}{1-\frac{x_{r}}{x_{s}}} \biggr]\prod _{r,s=1}^{n} \biggl(q\frac{x_{r}}{x_{s}};q \biggr)^{-1}_{y_{r}} \prod_{i=1}^{n}(x_{i})^{ny_{i}-(y_{1}+\cdots+y_{n})}(-1)^{(n-1)(y_{1}+\cdots+y_{n})} \\ & \qquad{}\times q^{y_{2}+2y_{3}+\cdots+(n-1)y_{n}+(n-1) [\binom{y_{1} }{2}+\cdots+\binom{y_{n}}{2} ]-e_{2}(y_{1},\ldots,y_{n})}P_{s+y_{1}+\cdots+y_{n}}\bigl(x,yq^{s} \bigr)t^{y_{1}+\cdots+y_{n}} \Biggr\} \\ &\quad=\frac{P_{s}(x,y)(ytq^{s};q)_{\infty }}{(xt;q)_{\infty }} \\ &\quad=\sum_{n=0}^{\infty }P_{s+n}(x,y) \frac{t^{n}}{(q;q)_{n}}. \end{aligned}$$

Hence

$$\begin{aligned} f(a,b,c,d,e,x,y,z)=\sum_{n=0}^{\infty }\omega _{n}^{\binom{a,b,c}{d,e}}(x,y,z|q) \frac{t^{n-s}}{(q;q)_{n-s}}, \end{aligned}$$

which is equal to the right-hand side of (6.2) by (4.9). The proof of Theorem 25 is complete. □

We remark in passing that, in a recently-published survey-cum-expository review article, the so-called \((p,q)\)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [26, p. 340]).