Skip to main content
Log in

Partitions into Beatty sequences

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\alpha >1\) be an irrational number. We establish asymptotic formulas for the number of partitions of n into summands and distinct summands, chosen from the Beatty sequence \((\lfloor \alpha m\rfloor )\). This improves some results of Erdös and Richmond established in 1977.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The condition stated in [2, pp. 213, Equation (1.331)] is

    $$\begin{aligned} n^{h}|\sin (\alpha n\pi )|\ge A>0 \end{aligned}$$

    for all \(n\in \mathbb N\). This is equivalent to our definition for irrationality exponent when letting \(\mu =1+h\).

  2. The condition stated in [1] is that there exists \(\lambda \in \mathbb R\) such that

    $$\begin{aligned} |\ell ^{1+\lambda +\varepsilon }\sin (\alpha \ell \pi )|\rightarrow \infty , \end{aligned}$$

    holds for any \(\varepsilon >0\), as integer \(\ell \rightarrow \infty \). This is equivalent to our definition for irrationality exponent when letting \(\mu =2+\lambda \).

  3. Note that there exist serval typos in the statement of [1, Theorem 2] as well as in its proof. For the corrected leading asymptotic formulas of \(p_{\alpha }(n)\) and \(q_{\alpha }(n)\) with \(\mu (\alpha )<\infty \), see Theorem 1.1 of this paper.

References

  1. Erdős, P., Richmond, B.: Partitions into summands of the form \([m\alpha ]\). In: Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1977), Congress. Numer., XX, pp. 371–377. Utilitas Math., Winnipeg, Man. (1978)

  2. Hardy, G.H., Littlewood, J.E.: Littlewood. Some problems of Diophantine approximation: the lattice-points of a right-angled triangle. (Second memoir.). Abh. Math. Sem. Univ. Hamburg 11(1), 211–248 (1922)

    Article  Google Scholar 

  3. Hardy, G.H., Ramanujan, S.: Asymptotic formulaae in combinatory analysis. Proc. Lond. Math. Soc. 2(17), 75–115 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ingham, A.E.: A Tauberian theorem for partitions. Ann. Math. 2(42), 1075–1090 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  5. Meinardus, G.: Asymptotische Aussagen über Partitionen. Math. Z. 59, 388–398 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ostrowski, A.: Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Univ. Hamburg 1(1), 77–98 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  7. Richmond, B.: A general asymptotic result for partitions. Can. J. Math. 27(5), 1083–1091 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Roth, K.F., Szekeres, G.: Some asymptotic formulae in the theory of partitions. Q. J. Math. Oxford Ser. (2) 5, 241–259 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Weisstein, E.W.: “Irrationality Measure.” From MathWorld—A Wolfram Web Resource (2020)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Hong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by Guangxi Normal University scientific research startup foundation, and Guangxi Science and Technology Plan Project #2020AC19236.

Appendix A: Numerical approximation for \(\Lambda _{\alpha }\)

Appendix A: Numerical approximation for \(\Lambda _{\alpha }\)

In this appendix, we investigate the numerical approximation for \(\Lambda _{\alpha }\). We define that

$$\begin{aligned} \Pi _{\alpha }=\prod _{\ell \ge 1}\left( 1-\frac{\{\alpha \ell \}}{\alpha \ell }\right) e^{\frac{1}{2\alpha \ell }}. \end{aligned}$$
(A.1)

Then the use of (1.5) implies that \(\Lambda _{\alpha }=4\sqrt{3}(\pi e^{-\gamma })^{1/2\alpha }(\alpha /6)^{1/4\alpha }\Pi _{\alpha }\). Taking the logarithm of (A.1) we obtain

$$\begin{aligned} \log \Pi _{\alpha }&=\sum _{\ell \ge 1}\left( \frac{1}{2\alpha \ell }+\log \left( 1-\frac{\{\alpha \ell \}}{\alpha \ell }\right) \right) \nonumber \\&=\bigg (\sum _{1\le \ell \le N}+\sum _{\ell >N}\bigg )\left( \frac{1}{2\alpha \ell }+\log \left( 1-\frac{\{\alpha \ell \}}{\alpha \ell }\right) \right) \nonumber \\&=:\Sigma _m(N)+\Sigma _e(N), \end{aligned}$$
(A.2)

where the integer \(N>10\) will be chosen for giving a good numerical approximation for \(\Lambda _{\alpha }\).

We now bound the error term \(\Sigma _e(N)\). We rewrite the sum of \(\Sigma _e(N)\) as

$$\begin{aligned} \Sigma _{e}(N)&=-\sum _{\ell>N}\frac{\widetilde{B}_1(\alpha \ell )}{\alpha \ell }+\sum _{\ell >N}\left( \log \left( 1-\frac{\{\alpha \ell \}}{\alpha \ell }\right) +\frac{\{\alpha \ell \}}{\alpha \ell }\right) \nonumber \\&=\Sigma _{e1}(N)+\Sigma _{e2}(N). \end{aligned}$$
(A.3)

It is not difficult to give a bound for the second sum above that

$$\begin{aligned} 0<-\Sigma _{e2}(N)&< -\sum _{\ell >N}\left( \log \left( 1-\frac{1}{\alpha \ell }\right) +\frac{1}{\alpha \ell }\right) \nonumber \\&<-\int _{N}^{\infty }\left( \log \left( 1-\frac{1}{\alpha x}\right) +\frac{1}{\alpha x}\right) \,dx<\frac{3\alpha N-2}{6\alpha N(\alpha N-1)}. \end{aligned}$$
(A.4)

Using part integration to \(\Sigma _{e1}(N)\) we have

$$\begin{aligned} \Sigma _{e1}(N)&=-\int _{N}^{\infty }\frac{1}{\alpha x}\,d S_{\alpha }(x)\nonumber \\&=\frac{S_{\alpha }(N)}{\alpha N}-\frac{1}{\alpha }\int _{N}^{\infty }\frac{S_{\alpha }(x)}{x^2}\,dx. \end{aligned}$$
(A.5)

We now focus on the approximation of \(\Lambda _{\alpha }\) for a class of irrational numbers \(\alpha \) in which the partial quotients of the continued fraction expansion of \(\alpha \) are bounded. In other words, \(\alpha \) has the following continued fraction expansion

$$\begin{aligned} \alpha =[a_0; a_1, a_2,\ldots ]=a_0+\frac{1}{a_1+\frac{1}{a_2+\cdots }} \end{aligned}$$

with all \(a_j\le A\) for some \(A>0\). In this case, Ostrowski [6, pp. 80–81] proved that

$$\begin{aligned} |S_{\alpha }(x)|\le \frac{3}{2}A\log x, \end{aligned}$$
(A.6)

for all \(x>10\). Substituting (A.6) in (A.5) we find that

$$\begin{aligned} |\Sigma _{e1}(N)|\le \frac{3A\log N}{\alpha N}+\frac{3A}{2\alpha N}. \end{aligned}$$

Combining (A.2)–(A.4) and the above upper bound, we obtain

$$\begin{aligned} \left| \log \Pi _{\alpha }-\Sigma _m(N)\right| < \frac{3A}{\alpha N}\left( \log N+\frac{1}{2}\right) +\frac{3\alpha N-2}{6\alpha N(\alpha N-1)}. \end{aligned}$$
(A.7)

We now give the numerical approximation for \(\Lambda _{\sqrt{2}}\). Note that \(\sqrt{2}=[1;2,2,2,\ldots ]\), that is the partial quotients of the continued fraction expansion are bounded by 2. Therefore, in (A.7), the constant A equals 2 for \(\alpha =\sqrt{2}\). Hence

$$\begin{aligned} \left| \log \Pi _{\sqrt{2}}-\Sigma _m(N)\right| < \frac{3\sqrt{2}}{N}\left( \log N+\frac{1}{2}\right) +\frac{3N-\sqrt{2}}{6N(\sqrt{2} N-1)}. \end{aligned}$$

Taking \(N=10^6\), then using Mathematica we find that

$$\log \Pi _{\sqrt{2}}=-0.127496+ 6.11\times 10^{-5}\theta ,$$

for some \(\theta \in (-1,1)\). Hence

$$\begin{aligned} \Lambda _{\sqrt{2}}=4\sqrt{3}(\pi e^{-\gamma })^{1/2\sqrt{2}}(\sqrt{2}/6)^{1/4\sqrt{2}}\Pi _{\sqrt{2}}\in (5.7731, 5.7739). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N.H. Partitions into Beatty sequences. Ramanujan J 59, 1007–1021 (2022). https://doi.org/10.1007/s11139-022-00577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00577-1

Keywords

Navigation