Skip to main content
Log in

Ramanujan-type \(1/\pi \)-series from bimodular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We develop an approach to establish \(1/\pi \)-series from bimodular forms. Utilizing this approach, we obtain new families of 2-variable \(1/\pi \)-series associated to Zagier’s sporadic Apéry-like sequences. We first establish a general form of \(1/\pi \)-series involving constants related to the evaluation of modular forms at CM-points. Then we discuss situations when the series have rational terms. In addition, we discuss strategies for evaluating the constants involved and present a number of explicit \(1/\pi \)-series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almkvist, G., Guillera, J.: Ramanujan–Sato-like series. In: Number Theory and Related Fields, Volume 43 of Springer Proc. Math. Stat, pp. 55–74. Springer, New York (2013)

    Chapter  Google Scholar 

  2. Apéry, R.: Irrationalité de \(\zeta 2\) et \(\zeta 3\). In: Proceedings of the Luminy Conference on Arithmetic, vol. 61, pp. 11–13 (1979)

  3. Baruah, N.D., Berndt, B.C., Chan, H.H.: Ramanujan’s series for \(1/\pi\): a survey. Am. Math. Monthly 116(7), 567–587 (2009)

    Article  MathSciNet  Google Scholar 

  4. Berndt, B.C., Chan, H.H.: Eisenstein series and approximations to \(\pi\). Ill. J. Math. 45(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Borwein, P.B.: A study in analytic number theory and computational complexity. a Wiley-Interscience Publication. In: Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1987)

    Google Scholar 

  6. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Borwein, J.M., Borwein, P.B.: Class number three Ramanujan type series for \(1/\pi\). J. Comput. Appl. Math. 46(1–2), 281–290 (1993)

    Article  MathSciNet  Google Scholar 

  8. Brafman, F.: Generating functions of Jacobi and related polynomials. Proc. Am. Math. Soc. 2, 942–949 (1951)

    Article  MathSciNet  Google Scholar 

  9. Chan, H.H.: The Bailey–Brafman identity and its analogues. J. Math. Anal. Appl. 399(1), 12–16 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chan, H.H., Liaw, W.-C.: Cubic modular equations and new Ramanujan-type series for \(1/\pi\). Pacif. J. Math. 192(2), 219–238 (2000)

    Article  MathSciNet  Google Scholar 

  11. Chan, H.H., Verrill, H.: The Apéry numbers, the Almkvist–Zudilin numbers and new series for \(1/\pi\). Math. Res. Lett. 16(3), 405–420 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chan, H.H., Cooper, S.: Rational analogues of Ramanujan’s series for \(1/\pi \). Math. Proc. Cambridge Philos. Soc. 153(2), 361–383 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chan, H.H., Tanigawa, Y.: A generalization of a Brafman–Bailey type identity. Proc. Am. Math. Soc. 143(1), 185–195 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chan, H.H., Liaw, W.-C., Tan, V.: Ramanujan’s class invariant \(\lambda _n\) and a new class of series for \(1/\pi\). J. Lond. Math. Soc. (2) 64(1), 93–106 (2001)

    Article  Google Scholar 

  15. Chan, H.H., Chan, S.H., Liu, Z.: Domb’s numbers and Ramanujan-Sato type series for \(1/\pi\). Adv. Math. 186(2), 396–410 (2004)

    Article  MathSciNet  Google Scholar 

  16. Chan, H.H., Tanigawa, Y., Yang, Y., Zudilin, W.: New analogues of Clausen’s identities arising from the theory of modular forms. Adv. Math. 228(2), 1294–1314 (2011)

    Article  MathSciNet  Google Scholar 

  17. Chan, H.H., Wan, J., Zudilin, W.: Legendre polynomials and Ramanujan-type series for \(1/\pi\). Isr. J. Math. 194(1), 183–207 (2013)

    Article  MathSciNet  Google Scholar 

  18. Chudnovsky, David V., Chudnovsky, Gregory V.: Approximations and complex multiplication according to Ramanujan. In: Ramanujan revisited (Urbana-Champaign, Ill., 1987), pp. 375–472. Academic Press, Boston, MA (1988)

  19. Ciliberto, C.: Classification of complex algebraic surfaces. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2020)

  20. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11(3), 308–339 (1979)

    Article  MathSciNet  Google Scholar 

  21. Cooper, S.: Sporadic sequences, modular forms and new series for \(1/\pi \). Ramanujan J. 29(1–3), 163–183 (2012)

    Article  MathSciNet  Google Scholar 

  22. Cooper, S., Wan, J.G., Zudilin, W.: Holonomic alchemy and series for \(1/\pi\). In Analytic number theory, modular forms and \(q\)-hypergeometric series. In: Volume 221 of Springer Proc. Math. Stat., pp. 179–205. Springer, Cham (2017)

    Google Scholar 

  23. González, J., Rotger, V.: Non-elliptic Shimura curves of genus one. J. Math. Soc. Jpn. 58(4), 927–948 (2006)

    Article  MathSciNet  Google Scholar 

  24. Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces. Commun. Math. Phys. 167(2), 301–350 (1995)

    Article  MathSciNet  Google Scholar 

  25. Lian, B.H., Shing-Tung, Y.: Mirror maps, modular relations and hypergeometric series. II. S-duality and mirror symmetry (Trieste, 1995). Nuclear Phys. B Proc. Suppl. 46, 248–262 (1996)

    Article  MathSciNet  Google Scholar 

  26. Ligozat, G.: Courbes modulaires de genre \(1\). In: Bull. Soc. Math. France, Mém. 43, Supplément au Bull. Soc. Math. France Tome 103, (ed.) Société Mathématique de France, vol. no. 3, Paris (1975)

  27. Ogg, A.P.: Real Points on Shimura Curves, vol. I, Volume 35 of Progr. Math. Arithmetic and Geometry. Birkhäuser, Boston (1983)

    Google Scholar 

  28. Ramachandra, K.: Some applications of Kronecker’s limit formulas. Ann. Math. 2(80), 104–148 (1964)

    Article  MathSciNet  Google Scholar 

  29. Ramanujan, S.: Modular equations and approximations to \(\pi \). Quart. J. Math. Oxford Ser. 2(45), 350–372 (1914)

    MATH  Google Scholar 

  30. Rogers, M.D., Straub, A.: A solution of Sun’s \$520 challenge concerning \(\frac{520}{\pi }\). Int. J. Numb. Theory 9(5), 1273–1288 (2013)

    Article  MathSciNet  Google Scholar 

  31. Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math. 2(85), 58–159 (1967)

    Article  MathSciNet  Google Scholar 

  32. Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. Math. (2) 102(3), 491–515 (1975)

    Article  MathSciNet  Google Scholar 

  33. Stienstra, J., Zagier, D.: Bimodular forms and holomorphic anomaly equation. In: Proceedings of the Workshop on Modular Forms and String Duality, Banff International Research Station (2006)

  34. Straub, A., Zudilin, W.: Short walk adventures. In: Bailey, D. (ed.) From Analysis to Visualization. JBCC, et al.: Springer Proceedings in Mathematics tatistics. Springer, Cham (2017)

    Google Scholar 

  35. Sun, Z.-W.: List of conjectural series for powers of \(\pi \) and other constants. arXiv e-prints, arXiv:1102.5649 (2011)

  36. Sun, Z.-W.: On sums related to central binomial and trinomial coefficients. In: Combinatorial and additive number theory—CANT 2011 and 2012, volume 101 of Springer Proc. Math. Stat., pp. 257–312. Springer, New York (2014)

  37. Sun, Z.-W.: New series for powers of \(\pi \) and related congruences. Electron. Res. Arch. 28(3), 1273–1342 (2020)

    Article  MathSciNet  Google Scholar 

  38. van der Poorten, A.: A proof that Euler missed\(\ldots \)Apéry’s proof of the irrationality of \(\zeta (3)\): an informal report. Math. Intell, 1(4), 195–203 (1978/79)

  39. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980)

  40. Wan, J.G.: Series for \(1/\pi \) using Legendre’s relation. Integr. Tansforms Spec. Funct. 25(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wan, J., Zudilin, W.: Generating functions of Legendre polynomials: a tribute to Fred Brafman. J. Approx. Theory 164(4), 488–503 (2012)

    Article  MathSciNet  Google Scholar 

  42. Weber, H.: Lehrbuch der Algebra, vol. III. Chelsea, New York (1961)

    Google Scholar 

  43. Yang, Y.: On differential equations satisfied by modular forms. Math. Z. 246(1–2), 1–19 (2004)

    Article  MathSciNet  Google Scholar 

  44. Yang, Y.: Transformation formulas for generalized Dedekind eta functions. Bull. Lond. Math. Soc. 36(5), 671–682 (2004)

    Article  MathSciNet  Google Scholar 

  45. Yang, Y.: Ramanujan-type identities for Shimura curves. Isr. J. Math. 214(2), 699–731 (2016)

    Article  MathSciNet  Google Scholar 

  46. Yang, Y., Yui, N.: Differential equations satisfied by modular forms and \(K3\) surfaces. Ill. J. Math. 51(2), 667–696 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Zagier, D.: Integral solutions of Apéry-like recurrence equations. In: Groups and symmetries, volume 47 of CRM Proc. Lecture Notes, pp. 349–366. Amer. Math. Soc, Providence, RI (2009)

  48. Zudilin, W.: Ramanujan-type formulae for \(1/\pi \): a second wind? In: Modular forms and string duality, volume 54 of Fields Inst. Commun., pp. 179–188. Amer. Math. Soc., Providence, RI (2008)

  49. Zudilin, W.: A generating function of the squares of Legendre polynomials. Bull. Aust. Math. Soc. 89(1), 125–131 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wadim Zudilin for many insightful comments on the earlier draft of the paper, especially those about Brafman’s works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuquan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the National Natural Science Foundation of China (11801424) and a start-up research grant from Wuhan University. The second author was partially supported by Grant 106-2115-M-002-009-MY3 from the Ministry of Science and Technology, Taiwan (R.O.C.)

Appendix A: 2-Variable \(1/\pi \)-series for sporadic Apéry sequences

Appendix A: 2-Variable \(1/\pi \)-series for sporadic Apéry sequences

See Tables 2, 3, 4, 5, 6, and 7.

Table 2 \(1/\pi \)-Series for \((a,b,c)=(7,2,-8)\)
Table 3 \(1/\pi \)-Series for \((a,b,c)=(10,3,9)\)
Table 4 \(1/\pi \)-Series for \((a,b,c)=(-17,-6,72)\)
Table 5 \(1/\pi \)-Series for \((a,b,c)=(-9,-3,27)\)
Table 6 \(1/\pi \)-Series for \((a,b,c)=(11,3,-1)\)
Table 7 \(1/\pi \)-Series for \((a,b,c)=(12,4,32)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, Y. Ramanujan-type \(1/\pi \)-series from bimodular forms. Ramanujan J 59, 831–882 (2022). https://doi.org/10.1007/s11139-021-00532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00532-6

Keywords

Mathematics Subject Classification

Navigation