Skip to main content
Log in

A generalization of a theorem of Sylvester and Schur

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we give an estimate of the lower bounds of the least common multiple of \(a,a+b,\ldots ,a+kb\) for \((a,b)=1,k\in \textit{N}^+\). Precisely, we prove that for any two coprime positive integers a and b, we have

$$\begin{aligned} L_{a,b,k}\ge \prod \limits _{p\mid b}p^{\text {Ord}_{p}^{k!}}\frac{1}{k!}\prod \limits _{i=0}^{k}(a+ib), \end{aligned}$$

where \(L_{a,b,k}\) is the least common multiple of \(a,a+b,\ldots ,a+kb\) and \(\text {Ord}_p^{k!}\) denotes the least s for which \(p^s\mid k!\) but \(p^{s+1}\not \mid k!\). In addition, we obtain a corollary that there is a number containing a prime divisor greater than k in the set \(\{a,a+b,\ldots ,a+kb\}\) for \((a,b)=1,b\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chebyshev, P.L.: Mémoire sur les nombres premiers. Mém. Acad. Sci. St. Ptersbourg 7, 17–33 (1850)

    Google Scholar 

  2. Dusart, P.: Explicit estimates of some functions over primes. Ramanujan J. 45(1), 227–251 (2018)

    Article  MathSciNet  Google Scholar 

  3. Erdös, P.: Beweis eines satzes von tschebyschef. Acta Litt. Univ. Sci. Szeged Sect. Math. 5, 194–198 (1932)

    MATH  Google Scholar 

  4. Erdös, P.: A theorem of Sylvester and Schur. J. Lond. Math. Soc. s1–9(4), 282–288 (1934)

    Article  MathSciNet  Google Scholar 

  5. Faulkner, M.: On a Theorem of Sylvester and Schur. J. Lond. Math. Soc. Second Ser. 41, 107–110 (1966)

    Article  MathSciNet  Google Scholar 

  6. Hanson, D.: On a theorem of Sylvester and Schur. Can. Math. Bull. 16(2), 195–199 (1973)

    Article  MathSciNet  Google Scholar 

  7. Moser, L.: Insolvability of \(\begin{pmatrix}2n\\n\end{pmatrix}=\begin{pmatrix}2a\\a\end{pmatrix}\begin{pmatrix}2b\\b\end{pmatrix}\). Can. Math. Bull. 6, 67–169 (1963)

    Google Scholar 

  8. Sun, Z.W.: Basic number theory introduction. Harbin Institute of Technology Press, Weihai (2014). (in Chinese)

    Google Scholar 

  9. Schur, J.: Einige Sätze über Primzahlen mit Anwendung auf Irreduzibilitätsfragen. Sitzungsber. Preuss. Acad. der Wiss. Phys.-Math. Kl. 23, 1–24 (1929)

    MATH  Google Scholar 

  10. Sylvester, J.J.: On arithmetical series, Messenger of Mathematics XXI (1892) 1–19, 87–120. Math. Paper 4, 687–731 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the National Natural Science Foundation of China (Grants 11571166, 11631006, 11790272). The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Sheng, J. A generalization of a theorem of Sylvester and Schur. Ramanujan J 58, 131–144 (2022). https://doi.org/10.1007/s11139-021-00467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00467-y

Keywords

Mathematics Subject Classification

Navigation