Skip to main content
Log in

Growth properties of the q-Dunkl transform in the space \(L^{p}_{q,\alpha }({\mathbb {R}}_{q},|x|^{2\alpha +1}d_{q}x)\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Our aim in this work is to prove an analogue of Titchmarsh’s theorem [19, Theorem 84] and Younis’s theorem [20, Theorem 3.3] on the image under the q-Dunkl transform of a class functions satisfying the q-Dunkl–Lipschitz condition in the space \(L^{p}_{q,\alpha }({\mathbb {R}}_{q},|x|^{2\alpha +1}d_{q}x)\), where \(1<p\le 2\). For this purpose, we use the generalized q-Dunkl translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achak, A., Bouhlal, A., Daher, R., Safouane, N.: Titchmarsh’s theorem and some remarks concerning the right-sided quaternion Fourier transform. Bol. Soc. Mat. Mex. (2020). https://doi.org/10.1007/s40590-019-00274-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Bettaibi, N., Bettaieb, R.H.: \( q \)-Analogue of the Dunkl transform on the real line. Tamsui Oxf. J. Math. Sci. 25(2), 117–207 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bettaibi, N., Bettaieb, R.H., Bouaziz, S.: Wavelet transform associated with the \( q \)-Dunkl operator. Tamsui Oxf. J. Math. Sci. 26(1), 77–101 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Daher, R., Tyr, O.: An analog of Titchmarsh’s theorem for the \(q\)-Dunkl transform in the space \(L^{2}_{q,\alpha }({\mathbb{R}}_{q})\). J. Pseudo-Differ. Oper. Appl. (2020). https://doi.org/10.1007/s11868-020-00330-6

    Article  MATH  Google Scholar 

  5. Daher, R., El Hamma, M., El Houasni, A.: Titchmarsh’s theorem for the Bessel transform. Matematika 28(2), 127–131 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  7. El Hamma, M., Daher, R.: On some theorems of the Dunkl–Lipschitz class for the Dunkl transform. Lobachevskii J. Math. 40, 1157–1163 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  9. Jackson, F.H.: On a \( q \)-definite integrals. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  10. Kac, V.G., Cheung, P.: Quantum Calculus. Springer, NewYork (2002)

    Book  Google Scholar 

  11. Mursaleen, M., Ahasan, M.: The Dunkl generalization of Stancu type \( q \)-Szász-Mirakjan-Kantorovich operators and some approximation results. Carpathian J. Math. 34(3), 363–370 (2018)

    Article  MathSciNet  Google Scholar 

  12. Mursaleen, M., Rahman, S.: Dunkl generalization of \(q\)-Szász–Mirakjan operators which preserve \(x^{2}\). Filomat 32(3), 733–747 (2018)

    Article  MathSciNet  Google Scholar 

  13. Mursaleen, M., Rahman, S., Alotaibi, A.: Dunkl generalization of \(q\)-Szász–Mirakjan Kantorovich operators which preserve some test functions. J. Inequal. Appl. 2016, 317 (2016)

    Article  Google Scholar 

  14. Mursaleen, M., Nasiruzzaman, M., Alotaibi, A.: On modified Dunkl generalization of Szász operators via \( q \)-calculus. J. Inequal. Appl. 2017, 38 (2017). https://doi.org/10.1186/s13660-017-1311-5

    Article  MATH  Google Scholar 

  15. Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Approximation results on Dunkl generalization of Phillips operators via \( q\)-calculus. Adv. Differ. Equ. 2019, 244 (2019). https://doi.org/10.1186/s13662-019-2178-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Rubin, R.L.: A \(q^{2}\)-analogue operator for \(q^{2}\)-analogue fourier analysis. J. Math. Anal. Appl. 212, 571–582 (1997)

    Article  MathSciNet  Google Scholar 

  17. Rubin, R.L.: Duhamel solutions of non-homogenous \(q^{2}\)-analogue wave equations. Proc. Am. Math. Soc. 135(3), 777–785 (2007)

    Article  Google Scholar 

  18. Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45(3), 239–245 (1950)

    Article  MathSciNet  Google Scholar 

  19. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford (1937)

    MATH  Google Scholar 

  20. Younis, M.S.: Fourier transforms of Dini–Lipschitz functions. Int. J. Math. Math. Sci. 9(2), 301–312 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for the useful comments and suggestions in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Tyr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daher, R., Tyr, O. Growth properties of the q-Dunkl transform in the space \(L^{p}_{q,\alpha }({\mathbb {R}}_{q},|x|^{2\alpha +1}d_{q}x)\). Ramanujan J 57, 119–134 (2022). https://doi.org/10.1007/s11139-021-00387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00387-x

Keywords

Mathematics Subject Classification

Navigation