Skip to main content
Log in

Application of Padé Approximation to Euler’s constant and Stirling’s formula

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The Digamma function \(\varGamma '/\varGamma \) admits a well-known (divergent) asymptotic expansion involving the Bernoulli numbers. Using Touchard-type orthogonal polynomials, we determine an effective bound for the error made when this asymptotic expansion is replaced by its nearly diagonal Padé approximant. By specialization, we obtain new fast converging sequences of approximations to Euler’s constant \(\gamma \). Even though these approximations are not strong enough to prove the putative irrationality of \(\gamma \), we explain why they can be viewed, in some sense, as analogs of Apéry’s celebrated sequences of approximations to \(\zeta (2)\) and \(\zeta (3)\). Similar ideas applied to the asymptotic expansion \(\log \varGamma \) enable us to obtain a refined version of Stirling’s formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We make here a slight abuse of notation, i.e., \([k-1/k]_F(z)\) should be noted \([k-1/k]_{{\widehat{F}}}(z)\), where \({\widehat{F}}(z):=\sum _{k=0}^\infty m_k z^k \in {\mathbb {K}}[[z]]\).

  2. The variable \(-z^2\) instead of z explains why the Padé approximants in this paper are evaluated at \(-\frac{1}{n^2}\) and not \(\frac{1}{n}\) as in [8].

References

  1. Alladi, K., Robinson, M.L.: Legendre polynomials and irrationality. Crelle’s J. 318, 137–155 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Apéry, R.: Irrationality of \(\zeta (2)\) and \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    Google Scholar 

  3. Aptekarev, A.I.: Rational Approximants for Euler Constant and Recurrence Relations, Sovremennye Problemy Matematiki (“Current Problems in Mathematics”), vol. 9. MIAN (Steklov Institute), Moscow (2007)

    Google Scholar 

  4. Askey, R., Wilson, J.: A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13(4), 651–655 (1982)

    Article  MathSciNet  Google Scholar 

  5. Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, vol. 50. Birkhauser, Basel (1980)

    Book  Google Scholar 

  6. Campbell, R.: Les Intégrales eulériennes et leurs applications: étude approfondie de la fonction gamma. Dunod, Paris (1966)

    MATH  Google Scholar 

  7. Miller, P.D.: Applied Asymptotic Analysis. Graduate Studies in Mathematics, vol. 75. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  8. Prévost, M.: A new proof of the irrationality of \(\zeta (2)\) and \(\zeta (3)\) using Padé approximants. J. Comput. Appl. Math. 67(2), 219–235 (1996)

    MathSciNet  Google Scholar 

  9. Prévost, M.: Legendre modified moments for Euler’s constant. J. Comput. Appl. Math. 219(2), 484–492 (2008)

    Article  MathSciNet  Google Scholar 

  10. Prévost, M.: Remainder Padé approximants for the Hurwitz zeta function. Results Math. 74, 22 (2019)

    Article  Google Scholar 

  11. Rivoal, T.: Nombres d’Euler, approximants de Padé et constante de Catalan. Ramanujan J. 11(2), 199–214 (2006)

    Article  MathSciNet  Google Scholar 

  12. Rivoal, T.: Rational approximations for values of derivatives of the Gamma function. Trans. Am. Math. Soc. 361, 6115–6149 (2009)

    Article  MathSciNet  Google Scholar 

  13. Touchard, J.: Nombres exponentiels et nombres de Bernoulli. Can. J. Math. 8, 305–320 (1956)

    Article  MathSciNet  Google Scholar 

  14. Wilson, J.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11, 690–701 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referee for her or his careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rivoal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prévost, M., Rivoal, T. Application of Padé Approximation to Euler’s constant and Stirling’s formula. Ramanujan J 54, 177–195 (2021). https://doi.org/10.1007/s11139-019-00201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00201-9

Keywords

Mathematics Subject Classification

Navigation