Skip to main content
Log in

The finite Littlewood problem in \({{\mathbb {F}}}_p\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let p be a large prime number and f(x) be an integer-valued function defined in \({\mathbb F}_p\). The Littlewood problem in \({{\mathbb {F}}}_p\) is to establish non-trivial lower bounds for the \(\ell _1\) norm of exponential sums involving f(x). In the present paper, we establish new lower bounds for exponential sums including polynomials, powers of any primitive root and subgroups of \(\mathbb {F}_p^*.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balog, A., Rusza, I.Z.: A new lower bound for the \(L^{1}\) mean of the exponential sum with the Mőbius function. Bull. Lond. Math. Soc. 31(4), 415–418 (1999)

    Article  Google Scholar 

  2. Bourgain, J.: Estimates of exponential sums related to the Diffie-Hellman distributions. Geom. Funct. Anal. 15(1), 1–34 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: Mordell’s exponential sum estimate revisited. J. Am. Math. Soc. 18(2), 477–499 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. 184(2), 633–682 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Garaev, M.Z.: On a variant of sum-product estimates and explicit exponential sum bounds in prime fields. Math. Proc. Cambridge Philos. Soc. 146(1), 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J., Glibichuk, A.A., Konyagin, S.V.: Estimates for the number of sums and products and for exponential sums in fields of prime order. J. Lond. Math. Soc. 2(73), 380–398 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields and their applications. Geom. Funct. Anal. 14, 27–57 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bochkarev, S.V.: On a method for estimating the \(L_1\)-norm of an exponential sum’. Proc. Steklov Inst. Math. 218, 74–78 (1997)

    MathSciNet  Google Scholar 

  9. Cilleruelo, J., Garaev, M.Z., Ostafe, A., Shparlinski, I.: On the concentration of points of polynomial maps and applications’. Math. Z. 272(3–4), 825–837 (2012)

    Article  MathSciNet  Google Scholar 

  10. García, V.C.: On the distribution of sparse sequences in prime fields and applications. J. Théor. Nombres Bordx. 25(2), 317–329 (2013)

    Article  MathSciNet  Google Scholar 

  11. Garaev, M.Z.: Sums and products of sets and estimates of rational trigonometric sums in fields of prime order. (Russian) Uspekhi Mat. Nauk, 65 No. 4(394), 5–66 (2010); translation. Russian Math. Surveys 65(4), 599–658 (2010)

    Article  MathSciNet  Google Scholar 

  12. Green, B., Konyagin, S.V.: On the Littlewood problem modulo a prime. Can. J. Math. 61(1), 141–164 (2009)

    Article  MathSciNet  Google Scholar 

  13. Karatsuba, A.A.: An estimate of the \(L_1\)-norm of an exponential sum. Math. Notes 64, 401–404 (1998)

    Article  MathSciNet  Google Scholar 

  14. Konyagin, S.V.: On the problem of Littlewood. Izv. Acad. Nauk. SSSR Ser. Mat. 45(2), 243–265 (1981)

    MATH  Google Scholar 

  15. Konyagin, S.V.: An estimate of the \(L_1\)-norm of an exponential sum. In: The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference Dedicated to Stechkins 80th Anniversary (in Russian). Ekaterinburg, pp. 88–89 (2000)

  16. Konyagin, S.V.: Bounds of exponential sums over subgroups and Gauss sums. In: Proc. 4th Intern. Conf. “Modern Problems of Number Theory and Its Applications: Current Problems, Part III ”, Moscow Lomonosov State Univ., Moscow, pp. 86–114 (2002)

  17. Konyagin, S.V., Shparlinski, I.E.: On the consecutive powers of a primitive root: gaps and exponential sums. Mathematika 58(1), 11–20 (2012)

    Article  MathSciNet  Google Scholar 

  18. Korobov, N.M.: Exponential Sums and Their Applications. Mathematics and its Applications (Soviet Series), vol. 80. Kluwer Academic Publishers Group, Dordrecht (1992)

    Chapter  Google Scholar 

  19. McGehee, O.C., Pigno, L., Smith, B.: Hardy’s inequality and the \(L_1\)-norm of exponential sums. Ann. Math. 113(3), 613–618 (1981)

    Article  MathSciNet  Google Scholar 

  20. Sanders, T.: The Littlewood-Gowers problem. J. Anal. Math. 101(1), 123–162 (2007)

    Article  MathSciNet  Google Scholar 

  21. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. USA 34, 204–207 (1948)

    Article  MathSciNet  Google Scholar 

  22. Wooley, T.D.: Approximating the main conjecture in Vinogradov’s mean value theorem. Mathematika 63(1), 292–350 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zygmund, A.: Trigonometric Series, vol. 1. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is thankful to the referee for careful reading the paper and useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Cuauhtemoc García.

Additional information

The author was supported by the Proyect CB005-16 from UAM-A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, V.C. The finite Littlewood problem in \({{\mathbb {F}}}_p\). Ramanujan J 47, 85–98 (2018). https://doi.org/10.1007/s11139-018-0038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0038-3

Keywords

Mathematics Subject Classification

Navigation