Skip to main content
Log in

Counting polynomial subset sums

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let D be a subset of a finite commutative ring R with identity. Let \(f(x)\in R[x]\) be a polynomial of degree d. For a nonnegative integer k, we study the number \(N_f(D,k,b)\) of k-subsets S in D such that

$$\begin{aligned} \sum _{x\in S} f(x)=b. \end{aligned}$$

In this paper, we establish several bounds for the difference between \(N_f(D,k, b)\) and the expected main term \(\frac{1}{|R|}{|D|\atopwithdelims ()k}\), depending on the nature of the finite ring R and f. For \(R=\mathbb {Z}_n\), let \(p=p(n)\) be the smallest prime divisor of n, \(|D|=n-c \ge C_dn p^{-\frac{1}{d}}\,+\,c\) and \(f(x)=a_dx^d +\cdots +a_0\in \mathbb {Z}[x]\) with \((a_d, \ldots , a_1, n)=1\). Then

$$\begin{aligned} \left| N_f(D, k, b)-\frac{1}{n}{n-c \atopwithdelims ()k}\right| \le {\delta (n)(n-c)+(1-\delta (n))\left( C_dnp^{-\frac{1}{d}}+c\right) +k-1\atopwithdelims ()k}, \end{aligned}$$

answering an open question raised by Stanley (Enumerative combinatorics, 1997) in a general setting, where \(\delta (n)=\sum _{i\mid n, \mu (i)=-1}\frac{1}{i}\) and \(C_d=e^{1.85d}\). Furthermore, if n is a prime power, then \(\delta (n) =1/p\) and one can take \(C_d=4.41\). Similar and stronger bounds are given for two more cases. The first one is when \(R=\mathbb {F}_q\), a q-element finite field of characteristic p and f(x) is general. The second one is essentially the well-known subset sum problem over an arbitrary finite abelian group. These bounds extend several previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.: On a conjecture of Peter Borwein. J. Symb. Comput. 20, 487–501 (1995)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: Sum-product theorems and applications. In: Additive Number Theory: Festschrift. In Honor of the Sixtieth Birthday of Melvyn B, Nathanson (2010)

  3. Bourgain, J., Konyagin, S.: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order. C. R. Math. Acad. Sci. Paris 337, 75–80 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Glibichuk, A., Konyagin, S.: Estimates for the number of sums and products and for exponential sums in fields of prime order. J. Lond. Math. Soc. (2) 73, 380–398 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Trans. Inf. Theory 54, 402–406 (2008)

    Article  Google Scholar 

  6. Cheng, Q., Hill, J., Wan, D.: Counting value sets: algorithm and complexity. In: Proceedings of the Tenth Algorithmic Number Theory Symposium. Open Book Series 1, pp. 235–248. Mathematical Science Publishers, Berkeley (2013)

    Article  MathSciNet  Google Scholar 

  7. Cochrane, T., Zheng, Z.: On upper bounds of Chalk and Hua for exponential sums. Proc. Am. Math. Soc. 129, 2505–2516 (2001)

    Article  MathSciNet  Google Scholar 

  8. Cochrane, T., Zheng, Z.: A survey on pure and mixed exponential sums modulo prime powers. In: Number Theory for the Millennium, I, pp. 273–300. AK Peters, Natick (2002)

    Article  MathSciNet  Google Scholar 

  9. Ding, P., Qi, M.: Further estimate of complete trigonometric sums. J. Tsinghua Univ. 29, 74–85 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Erdős, P., Heilbronn, H.: On the addition of residue classes mod p. Acta Arith. 9, 149–159 (1964)

    Article  MathSciNet  Google Scholar 

  11. Galil, Z., Margalit, O.: An almost linear-time algorithm for the dense subset-sum problem. SIAM J. Comput. 20, 1157–1189 (1991)

    Article  MathSciNet  Google Scholar 

  12. Heath-Brown, D.R., Konyagin, S.V.: New bounds for Gauss sums derived from \(k\)th powers, and for Heilbronn’s exponential sum. Q. J. Math. 51, 221–235 (2000)

    Article  MathSciNet  Google Scholar 

  13. Heilbronn, H.: Lecture Notes on Additive Number Theory mod \(p\). California Institute of Technology, Pasadena (1964)

    Google Scholar 

  14. Hua, L.K.: On an exponential sum. J. Chin. Math. Soc. 2, 301–312 (1940)

    MATH  Google Scholar 

  15. Hua, L.K.: On exponential sums. Sci. Rec. (N.S.) 1, 1–4 (1957)

    MathSciNet  MATH  Google Scholar 

  16. Hua, L.K.: Additive Primzahltheorie (German). B. G. Teubner Verlagsgesellschaft, Leipzig (1959)

  17. Konyagin, S.: Estimates for Gaussian sums and Waring’s problem modulo a prime (Russian). Trudy Mat. Inst. Steklov. 198, 111–124 (1992); translation in Proc. Steklov Inst. Math. 198, 105–117 (1994)

  18. Konyagin, S., Shparlinski, I.E.: Character Sums with Exponential Functions and Their Applications. Cambridge Tracts in Mathematics, vol. 136. Cambridge University Press, Cambridge (1999)

  19. Kosters, M.: The subset sum problem for finite abelian groups. J. Combin. Theory Ser. A 120, 527–530 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kitchloo, N., Pachter, L.: An interesting result about subset sums. MIT Unpublished Notes (1994)

  21. Li, J.: On the Odlyzko–Stanley enumeration problem and Warings problem over finite fields. J. Number Theory 133, 2267–2276 (2013)

    Article  MathSciNet  Google Scholar 

  22. Li, J.: A note on the Borwein conjecture (2017). arXiv:1512.01191

  23. Li, J., Wan, D.: On the subset sum problem over finite fields. Finite Fields Appl. 14, 911–929 (2008)

    Article  MathSciNet  Google Scholar 

  24. Li, J., Wan, D.: A new sieve for distinct coordinate counting. Sci. China Ser. A 53, 2351–2362 (2010)

    Article  MathSciNet  Google Scholar 

  25. Li, J., Wan, D.: Counting subsets of finite abelian groups. J. Combin. Theory Ser. A 19, 170–182 (2012)

    Article  MathSciNet  Google Scholar 

  26. Li, J., Wan, D., Zhang, J.: On the minimum distance of elliptic curve codes. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2391–2395 (2015)

  27. Lu, M.: Estimate of a complete trigonometric sum. Sci. Sin. Ser. A 28, 561–578 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Odlyzko, A.M., Stanley, R.P.: Enumeration of power sums modulo a prime. J. Number Theory 10, 263–272 (1978)

    Article  MathSciNet  Google Scholar 

  29. Ramanathan, K.G.: Some applications of Ramanujan’s trigonometrical sum \(C_m(n)\). Proc. Indian Acad. Sci. 20, 62–69 (1945)

    MATH  Google Scholar 

  30. Stanley, R.P.: Enumerative Combinatorics, vol. 1, Second edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  31. Stanley, R.P., Yoder, M.F.: A study of Varshamov codes for asymmetric channels. JPL Technical Report 32-1526, DSM, vol. XIV, pp. 117–123 (1973)

  32. Stečkin, S.B.: Estimate of a complete rational trigonometric sum, Proc. Inst. Steklov. 143, 188–220 (1977) (English translation, A.M.S. Issue 1, pp. 201–220, 1980)

  33. Wan, D.: Generators and irriducible polyniomials over finite fields. Math. Comput. 66, 1195–1212 (1997)

    Article  Google Scholar 

  34. Zhang, J., Fu, F., Wan, D.: Stopping sets of algebraic geometry codes. IEEE Trans. Inf. Theory 60, 1488–1495 (2014)

    Article  Google Scholar 

  35. Zhu, G., Wan, D.: An asymptotic formula for counting subset sums over subgroups of finite fields. Finite Fields Appl. 18, 192–209 (2012)

    Article  MathSciNet  Google Scholar 

  36. Zhu, G., Wan, D.: Computing the error distance of Reed–Solomon codes. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 214–224. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Richard Stanley for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyou Li.

Additional information

This work is supported by the National Science Foundation of China (11771280) and the National Science Foundation of Shanghai Municipal (17ZR1415400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wan, D. Counting polynomial subset sums. Ramanujan J 47, 67–84 (2018). https://doi.org/10.1007/s11139-018-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0020-0

Keywords

Mathematics Subject Classification

Navigation