Skip to main content
Log in

On Doi–Naganuma and Shimura liftings

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we extend the Doi–Naganuma lifting to higher levels by following the methods of Zagier and Kohnen. We prove that there is a Hecke-equivariant linear map from the space of elliptic cusp forms of integer weight k, level \(N, ((N,D)=1)\) to Hilbert cusp forms of weight k, level N associated to a real quadratic field of discriminant D (\(D\equiv 1\pmod {4}\)) with class number one. The above lifting is obtained by computing the explicit image of Poincaré series of weight k, level N for the cusp at \(\infty \). Finally, we see that the above lifting is closely related to the Dth Shimura lift on the Kohnen plus space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruinier, J.-H.: Borcherds product and Chern classes on Hirzebruch–Zagier divisors. Invent. Math. 132, 491–562 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bruinier, J.-H., Yang, T.: Twisted Borcherds product on Hilbert modular surfaces and their CM values. Am. J. Math. 129(3), 807–841 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruinier, J.-H., Geer, G.-V.-D., Harder, G., Zagier, D.: The 1-2-3 of modular forms. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Doi, K., Naganuma, H.: On the functional equation of certain Dirichlet series. Invent. Math. 9, 1–14 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehlen, S.: Twisted Borcherds product on Hilbert modular surfaces and the regularized theta lift. Int. J. Number Theory 6(7), 1473–1489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geer, G.-V.-D.: Hilbert Modular Surfaces. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Ghate, E.: Congruences between base-change and non-base-change Hilbert modular forms. Cohomology of arithmetic groups, \(L\)-functions and automorphic forms (Mumbai, 1998/1999). Tata Inst. Fund. Res. Tata Inst. Fund. Res. Stud. Math. 15, 35–62 (2001)

    Google Scholar 

  8. Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of \(L\)-series. II. Math. Ann. 278, 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Howe, R.: \(\theta \)-Series and invariant theory in automorphic forms, representations and \(L\)-functions. In: Proceedings of Symposia in Pure Mathematics XXXIII. American Mathematical Society, Providence, RI, pp. 275–285 (1979)

  10. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  11. Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. American Mathematical Society Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  12. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271(2), 237–268 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kohnen, W.: Modular forms of half-integral weight on \(\Gamma _{0}(4)\). Math. Ann. 248(3), 249–266 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, B., Manickam, M.: On Doi–Naganuma lifting. Tsukuba J. Math. 40(2), 125–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kudla, S.-S.: Theta-functions and Hilbert modular forms. Nagoya Math. J. 69, 97–106 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.: Restriction of coherent Hilbert Eisenstein series. Math. Ann. 368, 317–338 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Manickam, M., Meher, J., Ramakrishnan, B.: Theory of newforms of half-integral weight. Pac. J. Math. 274(1), 125–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Naganuma, H.: On the coincidence of two Dirichlet series associated with cusp forms of Hecke’s “Neben”-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Jpn. 25, 547–555 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Niwa, S.: Modular forms of half-integral weight and integral of certain theta functions. Nagoya Math. J. 56, 147–161 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oda, T.: On modular forms associated with indefinite quadratic forms of signature \((2, n-2)\). Math. Ann. 231, 97–144 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saito, H.: Automorphic forms and algebraic extension of number fields II. J. Math. Kyoto Univ. 19(1), 105–123 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Siegel, C.-L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gttingen Math. Phys. Kl. II 10, 84–102 (1969)

    MATH  Google Scholar 

  23. Yang, T.: CM number fields and modular forms. Pure Appl. Math. Q. 1(2), 305–340 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math. 30(1), 1–46 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable VI. Lecture Notes in Mathematics, vol. 627. Springer, Berlin, pp. 105–170 (1977)

Download references

Acknowledgements

The first author would like to thank Prof. E. Ghate for the helpful discussions. Theorem 1.1 arose from a question raised by Prof. B. Ramakrishnan during a discussion meeting at KSOM in February, 2016 while the first author was giving a talk on Doi–Naganuma lifting. The first author gratefully acknowledges him for this. The first author also thanks KSOM and The Institute of Mathematical Sciences for providing nice working conditions. Finally, the authors are thankful to the referee for going through the manuscript carefully and for valuable suggestions to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Manickam, M. On Doi–Naganuma and Shimura liftings. Ramanujan J 48, 279–303 (2019). https://doi.org/10.1007/s11139-017-9958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9958-6

Keywords

Mathematics Subject Classification

Navigation