Skip to main content
Log in

On the gaps between non-zero Fourier coefficients of cusp forms of higher weight

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We show that if a modular cuspidal eigenform f of weight 2k is 2-adically close to an elliptic curve \(E/\mathbb {Q}\), which has a cyclic rational 4-isogeny, then n-th Fourier coefficient of f is non-zero in the short interval \((X, X + cX^{\frac{1}{4}})\) for all \(X \gg 0\) and for some \(c > 0\). We use this fact to produce non-CM cuspidal eigenforms f of level \(N>1\) and weight \(k > 2\) such that \(i_f(n) \ll n^{\frac{1}{4}}\) for all \(n \gg 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkan, E.: Nonvanishing of Fourier coefficients of modular forms. Proc. Am. Math. Soc. 131(6), 1673–1680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkan, E.: On the sizes of gaps in the Fourier expansion of modular forms. Can. J. Math. 57(3), 449–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alkan, E.: Average size of gaps in the Fourier expansion of modular forms. Int. J. Number Theory 3(2), 207–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alkan, E., Zaharescu, A.: Nonvanishing of Fourier coefficients of newforms in progressions. Acta Arith. 116(1), 81–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alkan, E., Zaharescu, A.: \(B\)-free numbers in short arithmetic progressions. J. Number Theory 113(2), 226–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alkan, E., Zaharescu, A.: Nonvanishing of the Ramanujan tau function in short intervals. Int. J. Number Theory 1(1), 45–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alkan, E., Zaharescu, A.: On the gaps in the Fourier expansion of cusp forms. Ramanujan J. 16(1), 41–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balog, A., Ono, K.: The Chebotarev density theorem in short intervals and some questions of Serre. J. Number Theory 91(2), 356–371 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bambah, R.P., Chowla, S.: On numbers which can be expressed as a sum of two squares. Proc. Natl Inst. Sci. India 13, 101–103 (1947)

    MathSciNet  Google Scholar 

  10. Bilu, Y., Parent, P., Rebolledo, M.: Rational points on \(X^+_0(p^r)\). Ann. Inst. Fourier 63(3), 957–984 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, I., Kiming, I., Rasmussen, J.B.: On congruences mod \(p^m\) between eigenforms and their attached Galois representations. J. Number Theory 130(3), 608–619 (2010)

  12. Das, S., Ganguly, S.: Gaps between nonzero Fourier coefficients of cusp forms. Proc. Am. Math. Soc. 142(11), 3747–3755 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Das, S., Ganguly, S.: A note on small gaps between nonzero Fourier coefficients of cusp forms. Proc. Am. Math. Soc. 144(6), 2301–2305 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kowalski, E., Robert, O., Wu, J.: Small gaps in coefficients of \(L\)-functions and \(B\)-free numbers in short intervals. Rev. Mat. Iberoam. 23(1), 281–326 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lorenzini, D.: Torsion and Tamagawa numbers. Ann. Inst. Fourier 61(5), 1995–2037 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matomäki, K.: On the distribution of \(B\)-free numbers and non-vanishing Fourier coefficients of cusp forms. Glasg. Math. J. 54(2), 381–397 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes tudes Sci. Publ. Math. 47(1977), 33–186 (1978)

    MathSciNet  MATH  Google Scholar 

  18. Momose, F.: Rational points on the modular curves \(X_{\rm split}(p)\). Compos. Math. 52(1), 115–137 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Rasmussen, J.B.: Higher congruences between modular forms. PhD Thesis, Department of Mathematical Sciences, University of Copenhagen (2009)

  20. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes tudes Sci. Publ. Math. 54, 323–401 (1981)

    MATH  Google Scholar 

  21. Tsaknias, P.: A possible generalization of Maeda’s conjecture. Computations with modular forms. Contrib. Math. Comput. Sci. 6, 317–329 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referee for pointing out the references which are relevant to this problem and also for his/her suggestions which improved the presentation of the article. The author would also like to thank Dr. Satadal Ganguly for his suggestions during the preparation of this article. The basic idea of this article stems from the work of Das and Ganguly [12] and Rasmussen’s thesis [19] which provided us a way to look for the examples that we need.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimha Kumar.

Additional information

This work was supported by IIT Hyderabad through Institute’s startup research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. On the gaps between non-zero Fourier coefficients of cusp forms of higher weight. Ramanujan J 45, 95–109 (2018). https://doi.org/10.1007/s11139-016-9837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9837-6

Keywords

Mathematics Subject Classification

Navigation