Skip to main content
Log in

Stark points and the Hida–Rankin p-adic L-function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

This article is devoted to the elliptic Stark conjecture formulated by Darmon (Forum Math Pi 3:e8, 2015), which proposes a formula for the transcendental part of a p-adic avatar of the leading term at \(s=1\) of the Hasse–Weil–Artin L-series \(L(E,\varrho _1\otimes \varrho _2,s)\) of an elliptic curve \(E/\mathbb {Q}\) twisted by the tensor product \(\varrho _1\otimes \varrho _2\) of two odd 2-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a \(2\times 2\) p-adic regulator involving the p-adic formal group logarithm of suitable Stark points on E. This conjecture was proved by Darmon (Forum Math Pi 3:e8, 2015) in the setting where \(\varrho _1\) and \(\varrho _2\) are induced from characters of the same imaginary quadratic field K. In this note, we prove a refinement of this result that was discovered experimentally by Darmon (Forum Math Pi 3:e8, 2015, [Remark 3.4]) in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of Darmon (Forum Math Pi 3:e8, 2015) holds in a particular setting where the Hida–Rankin p-adic L-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both E and K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed, when g is cuspidal this hypothesis not only asks that \(\alpha \ne \beta \) but also that there should exist no real quadratic field F in which p splits such that \(\varrho _g \simeq {{\mathrm{Ind}}}_F^\mathbb {Q}(\xi )\) for some character \(\xi \) of F. However, in our CM setting, the existence of a character \(\xi \) of a real quadratic field F such that \(\mathrm {Ind}_\mathbb {Q}^K(\psi )\simeq \mathrm {Ind}_\mathbb {Q}^F(\xi )\) implies that \(\mathrm {Gal\,}(H/K)\simeq C_4\). Then F is the single real quadratic field contained in the quadratic extension of K cut out by \(\psi ^2\), and the condition \(\alpha \ne \beta \) implies that p cannot split in F.

  2. Indeed, when \(\theta (\psi )\) is Eisenstein, it is shown in [10, Sect. 1] that a necessary condition for hypotheses C–C\({^\prime }\) to hold is that \(\alpha = \beta \), but this is automatically satisfied because \(\psi ^2=1\). As explained in loc. cit., this is also expected to be a sufficient condition.

References

  1. Bertolini, M., Darmon, H.: Kato’s Euler system and rational points on elliptic curves I: a p-adic Beilinson formula. Isr. J. Math. 199(1), 163–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellaïche, J., Dimitrov, M.: On the eigencurve at classical weight one points. Duke Math. J. http://math.univ-lille1.fr/mladen/

  3. Bertolini, M., Darmon, H., Prasanna, K.: Generalised Heegner cycles and \(p\)-adic Rankin L-series. Duke Math J. 162(6), 1033–1148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertolini, M., Darmon, H., Prasanna, K.: p-Adic Rankin L-series and rational points on CM elliptic curves. Pac. J. Math. 260(2), 261–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertolini, M., Darmon, H., Rotger, V.: Beilinson-Flach elements and Euler systems I: syntomic regulators and \(p\)-adic Rankin L-series. J. Algebraic Geom. 24, 355–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertolini, M., Darmon, H., Rotger, V.: Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series. J. Algebraic Geom. 24, 569–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, D.A.: Primes of the Form \(x^2+ny^2\): Fermat, Class Field Theory and Complex Multiplication. Wiley, New York (1989)

    Google Scholar 

  8. Darmon, H.: Rational points on modular elliptic curves. In: CBMS Regional Conference Series in Mathematics, 101. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2004)

  9. Darmon, H., Dasgupta, S.: Elliptic units for real quadratic fields. Ann. Math. 163(1), 301–346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darmon, H., Lauder, A., Rotger, V.: Stark points and p-adic iterated integrals attached to modular forms of weight one. Forum Math. Pi 3, e8–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Darmon, H., Pollack, R.: The efficient calculation of Stark-Heegner points via overconvergent modular symbols. Isr. J. Math. 153, 319–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darmon, H., Rotger, V.: Diagonal cycles and Euler systems I: a p-adic Gross-Zagier formula. Ann. Scie. de l’Ecol. Norm. Supér. 47(4), 779–832 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Darmon, H., Rotger, V.: Diagonal cycles and Euler systems II: \(p\)-adic families and the Birch and Swinnerton-Dyer conjecture. J. Am. Math. Soc. (to appear)

  14. De Shalit, E.: Iwasawa Theory of Elliptic Curves with Complex Multiplication. \(p\)-Adic \(L\)-Functions. Academic Press, Boston (1987)

    MATH  Google Scholar 

  15. Dokchitser, V.: \(L\)-functions of non-abelian twists of elliptic curves. Ph.D. dissertation, Cambridge (2005)

  16. Gross, B.: Heegner points on \(X_0(N)\), Modular forms (Durham,1983): Ellis Horwood Ser. Math. Appli.: Statist. Oper. Res. Horwood, Chichester, pp. 87–105 (1984)

  17. Gross, B.: On the factorization of \(p\)-adic L-series. Invent. Math. 57(1), 83–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gross, B., Zagier, D.: Heegner points and derivatives of \(L\)-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hida, H.: Congruences of cusp forms and special values of their zeta functions. Invent. Math. 63, 225–261 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hida, H.: Elementary Theory of \(L\)-Functions and Eisenstein Series, vol. 26. London Mathematical Society Student Texts, Cambridge (1993)

    Book  MATH  Google Scholar 

  21. Kani, E.: The space of binary theta series. Ann. Sci. Math. Quebec 36, 501–534 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Kani, E.: Binary theta series and modular forms with complex multiplication. Int. J. Number Theory 10, 1025–1042 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katz, N.M.: \(p\)-Adic interpolation of real analytic Eisenstein series. Ann. Math. 104(3), 459–571 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Katz, N.M.: \(p\)-Adic \(L\)-functions for CM fields. Invent. Math. 49, 199–297 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (I). Invent. Math. 178, 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lauder, A.: Computations with classical and p-adic modular forms. LMS J. Comput. Math. 14, 214–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lauder, A.: Efficient computation of Rankin \(p\)-adic \(L\)-functions. In: Boeckle G., Wiese G. (eds.) Computations with Modular Forms, Proceedings of a Summer School and Conference, Heidelberg, August/September 2011, Springer, Berlin, pp. 181–200 (2014)

  28. Mazur, B., Tate, J., Teitelbaum, J.: On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84(1), 1–48 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petersson, H.: Uber die Berechnung der skalarprodukte ganzer modulformen. Commun. Math. Helv. 22, 168–199 (1949)

    Article  MATH  Google Scholar 

  30. Prasad, D.: Trilinear forms for representations of GL(2) and local epsilon factors. Compos. Math. 75, 1–46 (1990)

    MATH  Google Scholar 

  31. Roberts, G.: Unites elliptiques et formules pour le nombre de classes des extensions abeliennes d’un corps quadratique imaginaire. Bull. Soc. Math. France, Mém. 36, 77 (1973)

    MATH  Google Scholar 

  32. Rohrlich, D.: Root Numbers, Notes from PCMI/IAS: Arithmetic of L-Functions at Park City Mathematics Institute, Park City (2009)

  33. Rubin, K.: \(p\)-Adic \(L\)-functions and rational points on elliptic curves with complex multiplication. Invent. Math. 107(2), 323–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rubin, K.: \(p\)-Adic variants of the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication. In: \(p\)-Adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), pp. 71–80, Contemp. Math., vol. 165, Am. Math. Soc., Providence (1994)

  35. Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure. Appl. Math. 29, 783–804 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves. Grad. Texts Math., vol. 151 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Casazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casazza, D., Rotger, V. Stark points and the Hida–Rankin p-adic L-function. Ramanujan J 45, 451–473 (2018). https://doi.org/10.1007/s11139-016-9824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9824-y

Keywords

Mathematics Subject Classification

Navigation