Skip to main content
Log in

Zeta functions and asymptotic additive bases with some unusual sets of primes

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Fix \(\delta \in (0,1]\), \(\sigma _0\in [0,1)\) and a real-valued function \(\varepsilon (x)\) for which \(\varlimsup _{x\rightarrow \infty }\varepsilon (x)\leqslant 0\). For every set of primes \(\mathcal {P}\) whose counting function \(\pi _\mathcal {P}(x)\) satisfies an estimate of the form

$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl (x^{\sigma _0+\varepsilon (x)}\bigr ), \end{aligned}$$

we define a zeta function \(\zeta _\mathcal {P}(s)\) that is closely related to the Riemann zeta function \(\zeta (s)\). For \(\sigma _0\leqslant \frac{1}{2}\), we show that the Riemann hypothesis is equivalent to the non-vanishing of \(\zeta _\mathcal {P}(s)\) in the region \(\{\sigma >\frac{1}{2}\}\).

For every set of primes \(\mathcal {P}\) that contains the prime 2 and whose counting function satisfies an estimate of the form

$$\begin{aligned} \pi _\mathcal {P}(x)=\delta \,\pi (x)+O\bigl ((\log \log x)^{\varepsilon (x)}\bigr ), \end{aligned}$$

we show that \(\mathcal {P}\) is an exact asymptotic additive basis for \(\mathbb {N}\), i.e. for some integer \(h=h(\mathcal {P})>0\) the sumset \(h\mathcal {P}\) contains all but finitely many natural numbers. For example, an exact asymptotic additive basis for \(\mathbb {N}\) is provided by the set

$$\begin{aligned} \{2,547,1229,1993,2749,3581,4421,5281\ldots \}, \end{aligned}$$

which consists of 2 and every hundredth prime thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks, W.D., Freiberg, T., Turnage-Butterbaugh, C.L.: Consecutive primes in tuples. Acta Arith. 167(3), 261–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banks, W.D., Güloğlu, A.M., Vaughan, R.C.: Waring’s problem for Beatty sequences and a local to global principle. J. Théor. Nombres Bordx. 26(1), 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatterjee, S., Soundararajan, K.: Random multiplicative functions in short intervals. Int. Math. Res. Not. 479–492 (2012)

  4. Granville, A., Soundararajan, K.: The distribution of values of \(L(1,\chi _d)\). Geom. Funct. Anal. 13(5), 992–1028 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green, B., Tao, T.: Linear equations in primes. Ann. Math. (2) 171(3), 1753–1850 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Halberstam, H., Roth, K.F.: Sequences, 2nd edn. Springer, New York (1983)

    Book  MATH  Google Scholar 

  7. Harper, A.J.: On the limit distributions of some sums of a random multiplicative function. J. Reine Angew. Math. 678, 95–124 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Harper, A.J., Nikeghbali, A., Radziwiłł, M.: A note on Helson’s conjecture on moments of random multiplicative functions. In: Analytic Number Theory, pp. 145–169. Springer, Cham (2015)

  9. Haselgrove, C.B.: Some theorems in the analytic theory of numbers. J. Lond. Math. Soc. 26, 273–277 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helfgott, H.A.: The ternary Goldbach conjecture is true (2011). Preprint available: arXiv:1312.7748

  11. Jurzak, J.P.: Partial Euler products as a new approach to the Riemann hypothesis (2002). Preprint available: arxiv:1512.01565

  12. Khintchine, A.: Über einen Satz der Wahrscheinlichkeitsrechnung. Fundam. Math. 6, 9–20 (1924)

    Article  MATH  Google Scholar 

  13. Kisilevsky, H., Rubinstein, M.O.: Chebotarev sets. Acta Arith. 171(2), 97–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lau, Y.-K., Tenenbaum, G., Wu, J.: On mean values of random multiplicative functions. Proc. Am. Math. Soc. 141(2), 409–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H., Pan, H.: A density version of Vinogradov’s three primes theorem. Forum Math. 22(4), 699–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matomäki, K.: Sums of positive density subsets of the primes. Acta Arith. 159(3), 201–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maynard, J.: Small gaps between primes. Ann. Math. 181(1), 383–413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peshkir, G., Shiryaev, A.N.: Khinchin inequalities and a martingale extension of the sphere of their action (in Russian). Uspekhi Mat. Nauk 50(5)(305), 3–62 (1995); English translation in. Russ. Math. Surv. 50(5), 849–904 (1995)

  19. Ramaré, O.: On \(\check{\rm S}\)nirel’man’s constant. Ann. Scuola Norm. Super. Pisa Cl. Sci. (4) 22(4), 645–706 (1995)

    MathSciNet  Google Scholar 

  20. Ramaré, O., Ruzsa, I.Z.: Additive properties of dense subsets of sifted sequences. J. Théor. Nombres Bordx. 13(2), 559–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. In: Monatsberichte der Berliner Akademie (1859)

  22. Sárközy, A.: On finite addition theorems. Structure theory of set addition. Astérisque 258(xi–xii), 109–127 (1999)

    MATH  Google Scholar 

  23. Shao, X.: A density version of the Vinogradov three primes theorem. Duke Math. J. 163(3), 489–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shiu, D.K.L.: Strings of congruent primes. J. Lond. Math. Soc. (2) 61, 359–373 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tao, T.: Every odd number greater than \(1\) is the sum of at most five primes. Math. Comput. 83(286), 997–1038 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vinogradov, I.M.: Representation of an odd number as a sum of three primes. C. R. (Dokl) Acad. Sci. l’USSR 15, 191–294 (1937)

    Google Scholar 

  27. Wintner, A.: Random factorizations and Riemann’s hypothesis. Duke Math. J. 11, 267–275 (1944)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Tristan Freiberg, Andrew Granville, Victor Guo, and Stephen Montgomery-Smith for helpful comments. The author also thanks the anonymous referee for useful remarks and for pointing out [11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Banks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, W.D. Zeta functions and asymptotic additive bases with some unusual sets of primes. Ramanujan J 45, 57–71 (2018). https://doi.org/10.1007/s11139-016-9823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9823-z

Keywords

Mathematics Subject Classification

Navigation