Skip to main content
Log in

An explicit formula for the Fourier coefficients of Eisenstein series attached to lattices

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove an explicit formula for local densities of inhomogeneous quadratic forms. The formula is derived by calculating explicitly the Fourier coefficients of various types of Eisenstein series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böcherer, S.: Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen I. Math. Z. 183, 21–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böcherer, S.: Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen II. Math. Z. 189, 81–110 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruinier, J.H.: Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors. Springer Lec. Notes in Math., vol. 1780 (2002)

    Book  MATH  Google Scholar 

  4. Bruinier, J.H., Kuss, M.: Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscr. Math. 106, 443–459 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217, 271–285 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eichler, M.: Quadratische Formen und Orthogonale Gruppen. Springer, Heiderberg (1952)

    Book  MATH  Google Scholar 

  7. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progr. Math., vol. 55. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  8. Gelbart, S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Springer Lec. Notes in Math., vol. 530 (1976)

    MATH  Google Scholar 

  9. Gritsenko, V.: Fourier–Jacobi functions in n variables. Zap. Nauč. Semin. POMI 168, 32–44 (1988)

    Google Scholar 

  10. Gritsenko, V.: Fourier–Jacobi functions in n variables. J. Sov. Math. 53, 242–252 (1991)

    MathSciNet  Google Scholar 

  11. Ikeda, T.: On the theory of Jacobi forms and the Fourier–Jacobi coefficients of Eisenstein series. J. Math. Kyoto Univ. 34, 615–636 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Katsurada, H.: An explicit formula for Siegel series. Am. J. Math. 121, 415–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kudla, S.: Integrals of Borcherds forms. Compos. Math. 137, 293–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kudla, S., Rallis, S.: On the Weil–Siegel formula. J. Reine Angew. Math. 387, 1–68 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Kudla, S., Rapoport, M., Yang, T.: Modular Forms and Special Cycles on Shimura Curves. Annals of Math. Studies, vol. 161. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  16. Kudla, S., Yang, T.: Eisenstein series for SL(2). Sci. China Math. 53(9), 2275–2316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miyake, T.: Modular Forms. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  18. Rao, R.: On some explicit formulas in the theory of Weil representations. Pac. J. Math. 157, 335–371 (1993)

    Article  MATH  Google Scholar 

  19. Scheithauer, N.R.: On the classification of automorphic products and generalized Kac–Moody algebras. Invent. Math. 164, 641–678 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shimura, G.: Confluent hypergeometric functions on the tube domain. Math. Ann. 260, 269–302 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shimura, G.: An exact mass formula for orthogonal groups. Duke Math. J. 97, 1–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shimura, G.: The number of representations of an integer by a quadratic form. Duke Math. J. 100, 59–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shimura, G.: The representation of integers as sums of squares. Am. J. Math. 124, 1059–1081 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shimura, G.: Inhomogeneous quadratic forms and triangular numbers. Am. J. Math. 126, 191–214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shimura, G.: Arithmetic of Quadratic Forms. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  26. Siegel, C.L.: Lectures on quadratic forms. Tata Institute Lectures in Math., no. 7 (1967)

  27. Skoruppa, N.P.: Jacobi forms of critical weight and Weil representations. In: Modular Forms on Schiermonnikoog, pp. 239–266. Cambridge University Press, Cambridge (2008)

    Chapter  Google Scholar 

  28. Sugano, T.: Jacobi forms and theta lifting. Comment. Math. Univ. St. Pauli 44, 1–58 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Waldspurger, J.-L.: Sur les coefficients de fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60, 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for suggesting many improvements to the paper. The author is supported by the Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Yamana.

Additional information

The author is supported by the JSPS Institutional Program for Young Researcher Overseas Visits “Promoting international young researchers in mathematics and mathematical sciences led by OCAMI.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamana, S. An explicit formula for the Fourier coefficients of Eisenstein series attached to lattices. Ramanujan J 31, 315–352 (2013). https://doi.org/10.1007/s11139-012-9446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9446-y

Keywords

Mathematics Subject Classification

Navigation