Skip to main content
Log in

Multivariable Askey–Wilson function and bispectrality

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

For every positive integer d, we define a meromorphic function F d (n;z), where n,z∈ℂd, which is a natural extension of the multivariable Askey–Wilson polynomials of Gasper and Rahman (Theory and Applications of Special Functions, Dev. Math., vol. 13, pp. 209–219, Springer, New York, 2005). It is defined as a product of very-well-poised 8 φ 7 series and we show that it is a common eigenfunction of two commutative algebras \({\mathcal{A}}_{z}\) and \({\mathcal{A}}_{n}\) of difference operators acting on z and n, with eigenvalues depending on n and z, respectively. In particular, this leads to certain identities connecting products of very-well-poised 8 φ 7 series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), 55 (1985)

    MathSciNet  Google Scholar 

  2. Cherednik, I.: Macdonald’s evaluation conjectures and difference Fourier transform. Invent. Math. 122(1), 119–145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103(2), 177–240 (1986)

    Article  MATH  Google Scholar 

  4. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, vol. 35. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  6. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal Askey–Wilson polynomials. In: Theory and Applications of Special Functions. Dev. Math., vol. 13, pp. 209–219. Springer, New York (2005)

    Chapter  Google Scholar 

  7. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13(1–3), 389–405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geronimo, J., Iliev, P.: Bispectrality of multivariable Racah–Wilson polynomials. Constr. Approx. 31(3), 417–457 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haine, L., Iliev, P.: Askey–Wilson type functions with bound states. Ramanujan J. 11(3), 285–329 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iliev, P.: Bispectral commuting difference operators for multivariable Askey–Wilson polynomials. Trans. Am. Math. Soc. 363(3), 1577–1598 (2011)

    Article  MathSciNet  Google Scholar 

  11. Iliev, P., Xu, Y.: Discrete orthogonal polynomials and difference equations of several variables. Adv. Math. 212(1), 1–36 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ismail, M.E.H., Rahman, M.: The associated Askey–Wilson polynomials. Trans. Am. Math. Soc. 328(1), 201–237 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karlin, S., McGregor, J.: Linear growth models with many types and multidimensional Hahn polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions. Math. Res. Center, Univ. Wisconsin, vol. 35, pp. 261–288. Academic Press, San Diego (1975)

    Google Scholar 

  14. Koelink, E., Stokman, J.V.: The Askey–Wilson function transform. Int. Math. Res. Not. 22, 1203–1227 (2001)

    Article  MathSciNet  Google Scholar 

  15. Koornwinder, T.: Askey–Wilson polynomials for root systems of type BC. In: Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Tampa, FL, 1991. Contemp. Math., vol. 138, pp. 189–204. Am. Math. Soc., Providence (1992)

    Google Scholar 

  16. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45 (2000/01), Art. B45a, 40 pp.

  17. Milch, P.R.: A multi-dimensional linear growth birth and death process. Ann. Math. Stat. 39(3), 727–754 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. (2) 150(1), 267–282 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Suslov, S.: Some orthogonal very well poised 8 φ 7-functions. J. Phys. A 30(16), 5877–5885 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Suslov, S.: Some orthogonal very-well-poised 8 φ 7-functions that generalize Askey–Wilson polynomials. Ramanujan J. 5(2), 183–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-continuous families. J. Math. Phys. 32(8), 2065–2073 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32(9), 2337–2342 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. van Diejen, J.F.: Self-dual Koornwinder–Macdonald polynomials. Invent. Math. 126(2), 319–339 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Iliev.

Additional information

The work of the second author is partially supported by NSF grant DMS-0901092.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geronimo, J.S., Iliev, P. Multivariable Askey–Wilson function and bispectrality. Ramanujan J 24, 273–287 (2011). https://doi.org/10.1007/s11139-010-9244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-010-9244-3

Keywords

Mathematics Subject Classification (2000)

Navigation