Cella, D., Choi, S. W., Condon, D. M., Schalet, B., Hays, R. D., Rothrock, N. E., Yount, S., Cook, K. F., Gershon, R. C., Amtmann, D., DeWalt, D. A., Pilkonis, P. A., Stone, A. A., Weinfurt, K., & Reeve, B. B. (2019). PROMIS((R)) adult health profiles: Efficient short-form measures of seven health domains. Value in Health, 22(5), 537–544.
PubMed
PubMed Central
Article
Google Scholar
Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., Ader, D., Fries, J. F., Bruce, B., & Rose, M. (2007). The patient-reported outcomes measurement information system (PROMIS): Progress of an NIH roadmap cooperative group during its first two years. Medical Care, 45(5 Suppl 1), S3-s11.
PubMed
PubMed Central
Article
Google Scholar
Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., Thissen, D., Revicki, D. A., Weiss, D. J., Hambleton, R. K., Liu, H., Gershon, R., Reise, S. P., Lai, J. S., Cella, D., & Group, P. C. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the patient-reported outcomes measurement information system (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31.
PubMed
Article
Google Scholar
Tang, E., Bansal, A., Cao, S., Edwards, N., Li, M., Novak, M., & Mucsi, I. (2018). Validation of the PROMIS-57 and PROMIS-29 profile questionnaires in kidney transplant recipients. Transplantation, 102, S534.
Article
Google Scholar
Rose, A. J., Bayliss, E., Huang, W., Baseman, L., Butcher, E., Garcia, R. E., & Edelen, M. O. (2018). Evaluating the PROMIS-29 v2.0 for use among older adults with multiple chronic conditions. Quality of Life Research, 27(11), 2935–2944.
PubMed
PubMed Central
Article
Google Scholar
Hays, R. D., Spritzer, K. L., Schalet, B. D., & Cella, D. (2018). PROMIS(®)-29 v2.0 profile physical and mental health summary scores. Quality of Life Research : An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 27(7), 1885–1891.
Article
Google Scholar
Fischer, F., Gibbons, C., Coste, J., Valderas, J. M., Rose, M., & Leplege, A. (2018). Measurement invariance and general population reference values of the PROMIS profile 29 in the UK, France, and Germany. Quality of Life Research, 27(4), 999–1014.
PubMed
Article
Google Scholar
PROMIS Health Organization International. (2014). Minimum requirements for the release of PROMIS instruments after translation and recommendations for further psychometric evaluation v.8. http://www.healthmeasures.net. Retrieved 10 May 2020.
Riley, W. T., Rothrock, N., Bruce, B., Christodolou, C., Cook, K., Hahn, E. A., & Cella, D. (2010). Patient-reported outcomes measurement information system (PROMIS) domain names and definitions revisions: Further evaluation of content validity in IRT-derived item banks. Quality of Life Research, 19(9), 1311–1321.
PubMed
PubMed Central
Article
Google Scholar
PROMIS Health Organization International. (2013). PROMIS®instrument development and validation scientific standards version 2.0. http://www.healthmeasures.net. Retrieved 10 May 2020.
Crins, M. H. P., Terwee, C. B., Ogreden, O., Schuller, W., Dekker, P., Flens, G., Rohrich, D. C., & Roorda, L. D. (2019). Differential item functioning of the PROMIS physical function, pain interference, and pain behavior item banks across patients with different musculoskeletal disorders and persons from general population. Quality of Life Research, 28(5), 1231–1243.
PubMed
Article
Google Scholar
Healthmeasures Scoring service. NIH-PROMIS web site for scoring, accessed at https://www.assessmentcenter.net/ac_scoringservice.
Hays, R. D., Sherbourne, C. D., & Mazel, R. M. (1993). The RAND 36-item health survey 1.0. Health Economics, 2(3), 217–227.
CAS
PubMed
Article
Google Scholar
Hays, R. D., & Morales, L. S. (2001). The RAND-36 measure of health-related quality of life. Annals of Medicine, 33(5), 350–357.
CAS
PubMed
Article
Google Scholar
Mokkink, L. B., de Vet, H. C. W., Prinsen, C. A. C., Patrick, D. L., Alonso, J., Bouter, L. M., & Terwee, C. B. (2018). COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Quality of Life Research, 27(5), 1171–1179.
CAS
PubMed
Article
Google Scholar
Merriwether, E. N., Rakel, B. A., Zimmerman, M. B., Dailey, D. L., Vance, C. G. T., Darghosian, L., Golchha, M., Geasland, K. M., Chimenti, R., Crofford, L. J., & Sluka, K. A. (2017). Reliability and construct validity of the patient-reported outcomes measurement information system (PROMIS) instruments in women with fibromyalgia. Pain Medicine, 18(8), 1485–1495.
PubMed
Google Scholar
Flynn, K. E., Dew, M. A., Lin, L., Fawzy, M., Graham, F. L., Hahn, E. A., Hays, R. D., Kormos, R. L., Liu, H., McNulty, M., & Weinfurt, K. P. (2015). Reliability and construct validity of PROMIS(R) measures for patients with heart failure who undergo heart transplant. Quality of Life Research, 24(11), 2591–2599.
PubMed
PubMed Central
Article
Google Scholar
Jensen, R. E., Potosky, A. L., Reeve, B. B., Hahn, E., Cella, D., Fries, J., Smith, A. W., Keegan, T. H., Wu, X. C., Paddock, L., & Moinpour, C. M. (2015). Validation of the PROMIS physical function measures in a diverse US population-based cohort of cancer patients. Quality of Life Research, 24(10), 2333–2344.
PubMed
PubMed Central
Article
Google Scholar
Hays, R. D., & Reeve, B. B. (2008). Measurement and modeling of health-related quality of life. In E. Heggenhougen & S. Quah (Eds.), International encyclopedia of public health (pp. 241–252). San Diego: Academic Press.
Chapter
Google Scholar
Reise, S. P., Scheines, R., Widaman, K. F., & Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5–26.
Article
Google Scholar
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.
Article
Google Scholar
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R envi-ronment. Journal of Statistical Software, 48(6), 1–29.
Article
Google Scholar
Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational Statistics, 22(3), 265–289.
Google Scholar
Ark, L. A. V. D. (2007). Mokken scale analysis in R. Journal of Statistical Software. https://doi.org/10.18637/jss.v020.i11
Article
Google Scholar
Kang, T., & Chen, T. T. (2011). Performance of the generalized S-X2 item fit index for the graded response model. Asia Pacific Education Review, 12(1), 89–96.
Article
Google Scholar
Choi, S. W., Gibbons, L. E., & Crane, P. K. (2011). lordif: An R package for detecting differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte Carlo simulations. Journal of Statistical Software, 39(8), 1–30.
PubMed
PubMed Central
Article
Google Scholar
Crins, M. H., Roorda, L. D., Smits, N., de Vet, H. C., Westhovens, R., Cella, D., Cook, K. F., Revicki, D., van Leeuwen, J., Boers, M., Dekker, J., & Terwee, C. B. (2015). Calibration and validation of the Dutch-Flemish PROMIS pain interference item bank in patients with chronic pain. PLoS One, 10(7), e0134094.
PubMed
PubMed Central
Article
Google Scholar
Terwee, C. B., Crins, M. H. P., Boers, M., de Vet, H. C. W., & Roorda, L. D. (2019). Validation of two PROMIS item banks for measuring social participation in the Dutch general population. Quality of Life Research : An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 28(1), 211–220.
CAS
Article
Google Scholar
Cella, D. (2017). PROMIS Profiles-HUI data, Harvard Dataverse, V1, UNF:6:as5kqsPD5qqBf7JXcC1Uuw== [fileUNF]. https://doi.org/10.7910/DVN/P7UKWR.
Cella, D. (2015). PROMIS 1 Wave 1, Harvard Dataverse, V1, UNF:6:rvPujMWVpyI7i1VqktKmVw== [fileUNF]. https://doi.org/10.7910/DVN/0NGAKG
Cook, K., Kallen, M., & Amtmann, D. (2009). Having a fit: Impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption. An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 18(4), 447–460.
Google Scholar
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188.
Article
Google Scholar
Kopf, J., Zeileis, A., & Strobl, C. (2015). Anchor selection strategies for DIF analysis: Review, assessment, and new approaches. Educational and Psychological Measurement, 75(1), 22–56.
PubMed
Article
Google Scholar
Bingham, C. E. A. (2019). P10. A real-world evidence-based assessment and intra-method correlative analysis of PROMIS-29, in PHO 2019 conference abstracts. Journal of Patient-Reported Outcomes, 3(1), 68.
Google Scholar
Hinchcliff, M., Beaumont, J. L., Thavarajah, K., Varga, J., Chung, A., Podlusky, S., Carns, M., Chang, R. W., & Cella, D. (2011). Validity of two new patient-reported outcome measures in systemic sclerosis: Patient-reported outcomes measurement information system 29-item health profile and functional assessment of chronic illness therapy-dyspnea short form. Arthritis Care Res (Hoboken), 63(11), 1620–1628.
Article
Google Scholar
Schalet, B., Revicki, D., Cook, K., Krishnan, E., Fries, J., & Cella, D. (2015). Establishing a common metric for physical function: Linking the HAQ-DI and SF-36 PF subscale to PROMIS® physical function. Journal of General Internal Medicine, 30(10), 1517–1523.
PubMed
PubMed Central
Article
Google Scholar
Crins, M. H. P., van der Wees, P. J., Klausch, T., van Dulmen, S. A., Roorda, L. D., & Terwee, C. B. (2018). Psychometric properties of the PROMIS physical function item bank in patients receiving physical therapy. PLoS One, 13(2), e0192187.
PubMed
PubMed Central
Article
Google Scholar
Khanna, D., Maranian, P., Rothrock, N., Cella, D., Gershon, R., Khanna, P. P., Spiegel, B., Furst, D. E., Clements, P. J., Bechtel, A., & Hays, R. D. (2012). Feasibility and construct validity of PROMIS and “legacy” instruments in an academic scleroderma clinic. Value in Health, 15(1), 128–134.
PubMed
Article
Google Scholar
Depaoli, S., Tiemensma, J., & Felt, J. M. (2018). Assessment of health surveys: Fitting a multidimensional graded response model. Psychology, Health & Medicine, 23(sup1), 1299–1317.
Article
Google Scholar
Forero, C. G., & Maydeu-Olivares, A. (2009). Estimation of IRT graded response models: Limited versus full information methods. Psychological Methods, 14, 275–299.
PubMed
Article
Google Scholar
Reise, S. P., Rodriguez, A., Spritzer, K. L., & Hays, R. D. (2018). Alternative approaches to addressing non-normal distributions in the application of IRT models to personality measures. Journal of Personality Assessment, 100(4), 363–374.
PubMed
Article
Google Scholar
Wall, M. M., Park, J. Y., & Moustaki, I. (2015). IRT modeling in the presence of zero-inflation with application to psychiatric disorder severity. Applied Psychological Measurement, 39(8), 583–597.
PubMed
PubMed Central
Article
Google Scholar
Smits, N., Öğreden, O., Garnier-Villarreal, M., Terwee, C. B., & Chalmers, R. P. (2020). A study of alternative approaches to non-normal latent trait distributions in item response theory models used for health outcome measurement. Statistical Methods in Medical Research. https://doi.org/10.1177/0962280220907625
PubMed
PubMed Central
Article
Google Scholar
Lai, K. G., & Samuel, B. (2016). The problem with having two watches: Assessment of fit when RMSEA and CFI disagree. Multivariate Behavioral Research, 51(2–3), 220–239.
PubMed
Article
Google Scholar
Holseter, C., Dalen, J. D., Krokstad, S., & Eikemo, T. A. (2015). Self-rated health and mortality in different occupational classes and income groups in Nord-Tröndelag County, Norway. Selvrapportert helse og dödelighet i ulike yrkesklasser og inntektsgrupper i Nord-Tröndelag, 135(5), 434–438.
Google Scholar
Statistisk sentralbyrå SSB. (2017). Utdanningsnivå i befolkningen. https://www.ssb.no/utdanning/artikler-og-publikasjoner/her-er-okningen-i-hoyere-utdanning-storst. Accessed 10 Sept 2020.