Reich, D. S., Lucchinetti, C. F., & Calabresi, P. A. (2018). Multiple sclerosis. New England J Med, 378(2), 169–118.
CAS
Article
Google Scholar
Faissner, S., & Gold, R. (2019). Progressive multiple sclerosis: latest therapeutic developments and future directions. Therapeutic Adv Neurol Disorders, 25(12), 1756286419878323.
Google Scholar
Galea, I., Ward-Abel, N., & Heesen, C. (2015). Relapse in multiple sclerosis. British Med J, 350, h1765.
Article
Google Scholar
Kratz, A. L., Murphy, S. L., & Braley, T. J. (2017). Ecological momentary assessment of pain, fatigue, depressive, and cognitive symptoms reveals significant daily variability in multiple sclerosis. Archives Physical Medicine Rehabilitation, 98(11), 2142–2150.
Article
Google Scholar
Heine, M., van den Akker, L. E., Blikman, L., Hoekstra, T., van Munster, E., Verschuren, O., et al. (2016). Real-time assessment of fatigue in patients with multiple sclerosis: how does it relate to commonly used self-report fatigue questionnaires? Archives of Physical Medicine Rehabilitation, 97(11), 1887–1894.
Article
Google Scholar
Kasser, S. L., Goldstein, A., Wood, P. K., & Sibold, J. (2017). Symptom variability, affect and physical activity in ambulatory persons with multiple sclerosis: Understanding patterns and time-bound relationships. Disability Health J, 10(2), 207–213.
Article
Google Scholar
Powell, D. J. H., Liossi, C., Schlotz, W., & Moss-Morris, R. (2017). Tracking daily fatigue fluctuations in multiple sclerosis: ecological momentary assessment provides unique insights. Journal of Behavioral Medicine, 40(5), 772–783.
Article
Google Scholar
Kratz, A. L., Murphy, S. L., & Braley, T. J. (2017). Pain, fatigue, and cognitive symptoms are temporally associated within but not across days in multiple sclerosis. Archives Physical Med Rehabilitation, 98(11), 2151–2159.
Article
Google Scholar
Stone, A. A., & Shiffman, S. (1994). Ecological momentary assessment (EMA) in behavioral medicine. Annals Behav Med, 16(3), 199–202.
Article
Google Scholar
Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. New York, NY: Guilford Press.
Google Scholar
Schwarz, N. (Ed.). (2007). Retrospective and concurrent self-reports: The rationale for real-time data capture. New York, NY: Oxford University Press.
Google Scholar
Schwartz, C. E., & Sprangers, M. A. (1999). Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research. Social Sci Med, 48(11), 1531–1548.
CAS
Article
Google Scholar
Schneider, S., & Stone, A. A. (2016). Ambulatory and diary methods can facilitate the measurement of patient-reported outcomes. Quality Life Res, 25(3), 497–506.
Article
Google Scholar
Mareva, S., Thomson, D., Marenco, P., Estal Muñoz, V., Ott, C. V., Schmidt, B., et al. (2016). Study protocol on ecological momentary assessment of health-related quality of life using a smartphone application. Frontiers Psychol, 7, 1086.
Article
Google Scholar
Carlson, E. B., Field, N. P., Ruzek, J. I., Bryant, R. A., Dalenberg, C. J., Keane, T. M., et al. (2016). Advantages and psychometric validation of proximal intensive assessments of patient-reported outcomes collected in daily life. Quality Life Res, 25(3), 507–516.
Article
Google Scholar
Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality Life Res, 20(10), 1727–1736.
CAS
Article
Google Scholar
Devlin, N. J., & Brooks, R. (2017). EQ-5D and the EuroQol group: past, present and future. Applied Health Economics Health Policy, 15(2), 127–137.
Article
Google Scholar
Janssen, M. F., Pickard, A. S., Golicki, D., Gudex, C., Niewada, M., Scalone, L., et al. (2013). Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Quality Life Res, 22(7), 1717–1727.
CAS
Article
Google Scholar
Buchholz, I., Janssen, M. F., Kohlmann, T., & Feng, Y. S. (2018). A systematic review of studies comparing the measurement properties of the three-level and five-level versions of the EQ-5D. PharmacoEconomics, 36(6), 645–661.
Article
Google Scholar
Konnopka, A., & König, H. H. (2017). The “no problems”-problem: an empirical analysis of ceiling effects on the EQ-5D 5L. Quality Life Res, 26(8), 2079–2084.
Article
Google Scholar
Kuspinar, A., & Mayo, N. E. (2014). A review of the psychometric properties of generic utility measures in multiple sclerosis. PharmacoEconomics, 32(8), 759–773.
Article
Google Scholar
Efthymiadou, O., Mossman, J., & Kanavos, P. (2019). Health related quality of life aspects not captured by EQ-5D-5L: Results from an international survey of patients. Health Policy, 123(2), 159–165.
Article
Google Scholar
Jones, K. H., Ford, D. V., Jones, P. A., John, A., Middleton, R. M., Lockhart-Jones, H., et al. (2013). How people with multiple sclerosis rate their quality of life: an EQ-5D survey via the UK MS register. PLoS ONE, 8(6), e65640.
CAS
Article
Google Scholar
Hemmett, L., Holmes, J., Barnes, M., & Russell, N. (2004). What drives quality of life in multiple sclerosis? QJM: An International Journal of Medicine, 97(10), 671–676.
CAS
Article
Google Scholar
Kerr, C., Lloyd, E. J., Kosmas, C. E., Smith, H. T., Cooper, J. A., Johnston, K., et al. (2016). Health-related quality of life in Parkinson’s: impact of ‘off’ time and stated treatment preferences. Quality Life Res, 25(6), 1505–1515.
Article
Google Scholar
Maes, I. H. L., Delespaul, P. A. E. G., Peters, M. L., White, M. P., van Horn, Y., Schruers, K., et al. (2015). Measuring health-related quality of life by experiences: the experience sampling method. Value Health, 18(1), 44–51.
Article
Google Scholar
Kim, H., Sefcik, J. S., & Bradway, C. (2017). Characteristics of qualitative descriptive studies: a systematic review. Res Nursing Health, 40(1), 23–42.
CAS
Article
Google Scholar
Sullivan, J., Edgeley, K., & Dehoux, E. (1990). A survey of multiple sclerosis. part I: perceived cognitive problems and compensatory strategy used. Canadian J Rehabilitation, 4, 99–105.
Google Scholar
Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample size in qualitative interview studies: guided by information power. Qualitative Health Res, 26(13), 1753–1760.
Article
Google Scholar
Ludwig, K., Graf von der Schulenburg, J.-M., & Greiner, W. (2018). German value set for the EQ-5D-5L. PharmacoEconomics, 36(6), 663–674.
Article
Google Scholar
Shiffman, S. (2007). Designing protocols for ecological momentary assessment. In A. Stone, S. Shiffman, A. Atienza, & L. Nebeling (Eds.), The science of real-time data capture: Self-reports in health research. New York, NY: Oxford University Press.
Google Scholar
Fuller-Tyszkiewicz, M., Skouteris, H., Richardson, B., Blore, J., Holmes, M., & Mills, J. (2013). Does the burden of the experience sampling method undermine data quality in state body image research? Body Image, 10(4), 607–613.
Article
Google Scholar
Houben, M., van den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, 141(4), 901–930.
Article
Google Scholar
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., et al. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nat Human Behav, 3(5), 478–491.
Article
Google Scholar
Topp, J., Andrees, V., Heesen, C., Augustin, M., & Blome, C. (2019). Recall of health-related quality of life: how does memory affect the SF-6D in patients with psoriasis or multiple sclerosis? A prospective observational study in Germany. British Med J Open, 9(11), e032859.
Google Scholar
Black, A., Harel, O., & Matthews, G. (2012). Techniques for Analyzing Intensive Longitudinal Data with Missing Values. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life. New York: The Guilford Press.
Google Scholar