Schwartz, C. E., & Rapkin, B. D. (2004). Reconsidering the psychometrics of quality of life assessment in light of response shift and appraisal. Health and Quality of Life Outcomes, 2(1), 16. https://doi.org/10.1186/1477-7525-2-16.
Article
PubMed
PubMed Central
Google Scholar
Golembiewski, R. T. (1976). Measuring change and persistence in human affairs: Types of change generated by OD designs. The Journal of Applied Behavioral Science, 12(2), 133–157. https://doi.org/10.1177/002188637601200201.
Article
Google Scholar
Howard, G. S., Ralph, K. M., Gulanick, N. A., Maxwell, S. E., Nance, D. W., & Gerber, S. K. (1979). Internal invalidity in pretest-posttest self-report evaluations and a re-evaluation of retrospective pretests. Applied Psychological Measurement, 3(1), 1–23. https://doi.org/10.1177/014662167900300101.
Article
Google Scholar
Sprangers, M. A., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: a theoretical model. Social Science & Medicine, 48(11), 1507–1515.
CAS
Article
Google Scholar
Rapkin, B. D., & Schwartz, C. E. (2004). Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes, 2, 14. https://doi.org/10.1186/1477-7525-2-14.
Article
PubMed
PubMed Central
Google Scholar
Oort, F. J. (2005). Towards a formal definition of response shift (in reply to G.W. Donaldson). Quality of Life Research An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 14(10), 2353–2355. https://doi.org/10.1007/s11136-005-3978-1.
Article
Google Scholar
Oort, F. J., Visser, M. R. M., & Sprangers, M. A. G. (2009). Formal definitions of measurement bias and explanation bias clarify measurement and conceptual perspectives on response shift. Journal of Clinical Epidemiology, 62(11), 1126–1137. https://doi.org/10.1016/j.jclinepi.2009.03.013.
Article
PubMed
Google Scholar
Vanier, A., Oort, F. J., McClimans, L., Ow, N., Gulek, B. G., Böhnke, J. R., … & the Response Shift - in Sync Working Group. (n.d.). Response shift in patient-reported outcomes measures: A formal definition and a revised model., Manuscript under review (same issue).
Schwartz, C. E., Ahmed, S., Sawatzky, R., Sajobi, T., Mayo, N., Finkelstein, J., …, & Sprangers, M. A. G. (2013). Guidelines for secondary analysis in search of response shift. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 22(10), 2663–2673. https://doi.org/10.1007/s11136-013-0402-0.
Article
Google Scholar
Schwartz, C. E., & Sprangers, M. A. G. (2010). Guidelines for improving the stringency of response shift research using the thentest. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 19(4), 455–464. https://doi.org/10.1007/s11136-010-9585-9.
Article
Google Scholar
Sajobi, T. T., Brahmbatt, R., Lix, L. M., Zumbo, B. D., & Sawatzky, R. (2018). Scoping review of response shift methods: Current reporting practices and recommendations. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 27(5), 1133–1146. https://doi.org/10.1007/s11136-017-1751-x.
Article
Google Scholar
Sawatzky, R., Sajobi, T. T., Brahmbhatt, R., Chan, E. K. H., Lix, L. M., & Zumbo, B. D. (2017). Longitudinal change in response processes: A response shift perspective. In B. D. Zumbo & A. M. Hubley (Eds.), Understanding and investigating response processes in validation research (pp. 251–276). Cham: Springer.
Chapter
Google Scholar
Mayo, N. E., Scott, S. C., Dendukuri, N., Ahmed, S., & Wood-Dauphinee, S. (2008). Identifying response shift statistically at the individual level. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 17(4), 627–639. https://doi.org/10.1007/s11136-008-9329-2.
Article
Google Scholar
Li, Y., & Rapkin, B. (2009). Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS. Journal of Clinical Epidemiology, 62(11), 1138–1147. https://doi.org/10.1016/j.jclinepi.2009.03.021.
Article
PubMed
PubMed Central
Google Scholar
Lix, L. M., Sajobi, T. T., Sawatzky, R., Liu, J., Mayo, N. E., Huang, Y., …, & Bernstein, C. N. (2013). Relative importance measures for reprioritization response shift. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 22(4), 695–703. https://doi.org/10.1007/s11136-012-0198-3.
Article
Google Scholar
Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Schwartz, C. E., …, & Sébille, V. (2015). RespOnse Shift ALgorithm in Item response theory (ROSALI) for response shift detection with missing data in longitudinal patient-reported outcome studies. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 24(3), 553–564. https://doi.org/10.1007/s11136-014-0876-4.
Article
Google Scholar
Gerlich, C., Schuler, M., Jelitte, M., Neuderth, S., Flentje, M., Graefen, M., …, & Faller, H. (2016). Prostate cancer patients’ quality of life assessments across the primary treatment trajectory: “True” change or response shift? Acta Oncologica (Stockholm, Sweden), 55(7), 814–820. https://doi.org/10.3109/0284186X.2015.1136749.
Article
Google Scholar
Reissmann, D. R., Erler, A., Hirsch, C., Sierwald, I., Machuca, C., & Schierz, O. (2018). Bias in retrospective assessment of perceived dental treatment effects when using the Oral Health Impact Profile. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 27(3), 775–782. https://doi.org/10.1007/s11136-017-1725-z.
Article
Google Scholar
Visser, M. R. M., Oort, F. J., & Sprangers, M. A. G. (2005). Methods to detect response shift in quality of life data: A convergent validity study. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 14(3), 629–639. https://doi.org/10.1007/s11136-004-2577-x.
Article
Google Scholar
Ahmed, S., Mayo, N. E., Wood-Dauphinee, S., Hanley, J. A., & Cohen, S. R. (2005). The structural equation modeling technique did not show a response shift, contrary to the results of the then test and the individualized approaches. Journal of Clinical Epidemiology, 58(11), 1125–1133. https://doi.org/10.1016/j.jclinepi.2005.03.003.
Article
PubMed
Google Scholar
Schwartz, C. E., Sprangers, M. A. G., Oort, F. J., Ahmed, S., Bode, R., Li, Y., & Vollmer, T. (2011). Response shift in patients with multiple sclerosis: An application of three statistical techniques. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 20(10), 1561–1572. https://doi.org/10.1007/s11136-011-0056-8.
Article
Google Scholar
Salmon, M., Blanchin, M., Rotonda, C., Guillemin, F., & Sébille, V. (2017). Identifying patterns of adaptation in breast cancer patients with cancer-related fatigue using response shift analyses at subgroup level. Cancer Medicine, 6(11), 2562–2575. https://doi.org/10.1002/cam4.1219.
CAS
Article
PubMed
PubMed Central
Google Scholar
Preiß, M., Friedrich, M., Stolzenburg, J.-U., Zenger, M., & Hinz, A. (2019). Response shift effects in the assessment of urologic cancer patients’ quality of life. European Journal of Cancer Care, 28(4), e13027. https://doi.org/10.1111/ecc.13027.
Article
PubMed
Google Scholar
Blanchin, M., Guilleux, A., Hardouin, J.-B., & Sébille, V. (2020). Comparison of structural equation modelling, item response theory and Rasch measurement theory-based methods for response shift detection at item level: A simulation study. Statistical Methods in Medical Research, 29(4), 1015–1029. https://doi.org/10.1177/0962280219884574.
Article
PubMed
Google Scholar
Sprangers, M. A. G., Sajobi, Tolulope T., Vanier, A., Mayo, N. E., Sawatzky, R., Lix, L. M., et al. & The Response Shift—in Sync Working Group. (2021). Response shift in results of patient-reported outcome measures: A commentary to the response shift - in sync working group initiative. Quality of Life Research. https://doi.org/10.1007/s11136-020-02747-4.
Article
PubMed
PubMed Central
Google Scholar
Sawatzky, R., Kwon, J.-Y., Barclay, R., Chauhan, C., Frank, L., van den Hout, W., et al. & The Response Shift—in Sync Working Group (2021). Implications of response shift for micro-, meso-, and macro-level healthcare decision-making using results of patient-reported outcome measures. Quality of Life Research,. https://doi.org/10.1007/s11136-021-02766-9.
Article
PubMed
Google Scholar
Schwartz, C. E., & Sprangers, M. A. G. (1999). Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research. Social Science & Medicine, 48(11), 1531–1548.
CAS
Article
Google Scholar
Barclay-Goddard, R., Epstein, J. D., & Mayo, N. E. (2009). Response shift: A brief overview and proposed research priorities. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 18(3), 335–346. https://doi.org/10.1007/s11136-009-9450-x.
Article
Google Scholar
Sprangers, M. A., Van Dam, F. S., Broersen, J., Lodder, L., Wever, L., Visser, M. R., …, & Smets, E. M. (1999). Revealing response shift in longitudinal research on fatigue–the use of the thentest approach. Acta Oncologica (Stockholm, Sweden), 38(6), 709–718.
CAS
Article
Google Scholar
Beeken, R. J., Eiser, C., & Dalley, C. (2011). Health-related quality of life in haematopoietic stem cell transplant survivors: A qualitative study on the role of psychosocial variables and response shifts. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 20(2), 153–160. https://doi.org/10.1007/s11136-010-9737-y.
Article
Google Scholar
Ahmed, S., Mayo, N. E., Wood-Dauphinee, S., Hanley, J. A., & Cohen, S. R. (2005). Using the Patient Generated Index to evaluate response shift post-stroke. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 14(10), 2247–2257. https://doi.org/10.1007/s11136-005-8118-4.
Article
Google Scholar
Ring, L., Höfer, S., Heuston, F., Harris, D., & O’Boyle, C. A. (2005). Response shift masks the treatment impact on patient reported outcomes (PROs): The example of individual quality of life in edentulous patients. Health and Quality of Life Outcomes, 3, 55. https://doi.org/10.1186/1477-7525-3-55.
Article
PubMed
PubMed Central
Google Scholar
Korfage, I. J., de Koning, H. J., & Essink-Bot, M.-L. (2007). Response shift due to diagnosis and primary treatment of localized prostate cancer: A then-test and a vignette study. Quality of Life Research, 16(10), 1627–1634. https://doi.org/10.1007/s11136-007-9265-6.
Article
PubMed
PubMed Central
Google Scholar
Oort, F. J. (2005). Using structural equation modeling to detect response shifts and true change. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 14(3), 587–598.
Article
Google Scholar
Boucekine, M., Boyer, L., Baumstarck, K., Millier, A., Ghattas, B., Auquier, P., & Toumi, M. (2015). Exploring the response shift effect on the quality of life of patients with schizophrenia: An application of the random forest method. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 35(3), 388–397. https://doi.org/10.1177/0272989X14559273.
Article
Google Scholar
King-Kallimanis, B. L., Oort, F. J., & Garst, G. J. A. (2010). Using structural equation modelling to detect measurement bias and response shift in longitudinal data. AStA Advances in Statistical Analysis, 94(2), 139–156. https://doi.org/10.1007/s10182-010-0129-y.
Article
Google Scholar
Lix, L. M., Chan, E. K. H., Sawatzky, R., Sajobi, T. T., Liu, J., Hopman, W., & Mayo, N. (2016). Response shift and disease activity in inflammatory bowel disease. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 25(7), 1751–1760. https://doi.org/10.1007/s11136-015-1188-z.
Article
Google Scholar
Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.-M., & Thiébaut, R. (2007). Robustness of the linear mixed model to misspecified error distribution. Computational Statistics & Data Analysis, 51(10), 5142–5154. https://doi.org/10.1016/j.csda.2006.05.021.
Article
Google Scholar
Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27.
Article
Google Scholar
Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469.
Article
Google Scholar
Muthén, B. O. (2001). Latent variable mixture modeling. New developments and techniques in structural equation modeling. New York: Psychology Press.
Google Scholar
Sawatzky, R., Ratner, P. A., Kopec, J. A., & Zumbo, B. D. (2012). Latent variable mixture models: a promising approach for the validation of patient reported outcomes. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 21(4), 637–650. https://doi.org/10.1007/s11136-011-9976-6.
Article
Google Scholar
Lubke, G. H., & Luningham, J. (2017). Fitting latent variable mixture models. Behaviour Research and Therapy, 98, 91–102. https://doi.org/10.1016/j.brat.2017.04.003.
Article
PubMed
PubMed Central
Google Scholar
Tueller, S., & Lubke, G. (2010). Evaluation of structural equation mixture models parameter estimates and correct class assignment. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 165–192. https://doi.org/10.1080/10705511003659318.
Article
Google Scholar
Barclay-Goddard, R., Lix, L. M., Tate, R., Weinberg, L., & Mayo, N. E. (2009). Response shift was identified over multiple occasions with a structural equation modeling framework. Journal of Clinical Epidemiology, 62(11), 1181–1188. https://doi.org/10.1016/j.jclinepi.2009.03.014.
Article
PubMed
Google Scholar
Verdam, M. G. E., & Oort, F. J. (2014). Measurement bias detection with Kronecker product restricted models for multivariate longitudinal data: An illustration with health-related quality of life data from thirteen measurement occasions. Frontiers in Psychology, 5, 1022. https://doi.org/10.3389/fpsyg.2014.01022.
Article
PubMed
PubMed Central
Google Scholar
Verdam, M. G. E., & Oort, F. J. (2019). The analysis of multivariate longitudinal data: An instructive application of the longitudinal three-mode model. Multivariate Behavioral Research, 54(4), 457–474. https://doi.org/10.1080/00273171.2018.1520072.
CAS
Article
PubMed
Google Scholar
Lowy, A., & Bernhard, J. (2004). Quantitative assessment of changes in patients’ constructs of quality of life: An application of multilevel models. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 13(7), 1177–1185. https://doi.org/10.1023/B:QURE.0000037510.17893.d2.
Article
Google Scholar
Cheng, J., Edwards, L. J., Maldonado-Molina, M. M., Komro, K. A., & Muller, K. E. (2010). Real longitudinal data analysis for real people: Building a good enough mixed model. Statistics in Medicine, 29(4), 504–520. https://doi.org/10.1002/sim.3775.
Article
PubMed
PubMed Central
Google Scholar
Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm, K. J. (2017). Testing measurement invariance in longitudinal data with ordered-categorical measures. Psychological Methods, 22(3), 486–506. https://doi.org/10.1037/met0000075.
Article
PubMed
Google Scholar
Verhagen, J., & Fox, J.-P. (2013). Longitudinal measurement in health-related surveys. A Bayesian joint growth model for multivariate ordinal responses. Statistics in Medicine, 32(17), 2988–3005. https://doi.org/10.1002/sim.5692.
Article
PubMed
Google Scholar
Bishop, J., Geiser, C., & Cole, D. A. (2015). Modeling latent growth with multiple indicators: A comparison of three approaches. Psychological Methods, 20(1), 43–62. https://doi.org/10.1037/met0000018.
Article
PubMed
Google Scholar
Dantan, E., Joly, P., Dartigues, J.-F., & Jacqmin-Gadda, H. (2011). Joint model with latent state for longitudinal and multistate data. Biostatistics (Oxford, England), 12(4), 723–736. https://doi.org/10.1093/biostatistics/kxr003.
CAS
Article
Google Scholar
Zhang, Z., & Sun, J. (2010). Interval censoring. Statistical Methods in Medical Research, 19(1), 53–70. https://doi.org/10.1177/0962280209105023.
Article
PubMed
Google Scholar
Hinds, A. M., Sajobi, T. T., Sebille, V., Sawatzky, R., & Lix, L. M. (2018). A systematic review of the quality of reporting of simulation studies about methods for the analysis of complex longitudinal patient-reported outcomes data. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 27(10), 2507–2516. https://doi.org/10.1007/s11136-018-1861-0.
Article
Google Scholar
de Bock, É., Hardouin, J.-B., Blanchin, M., Le Neel, T., Kubis, G., Bonnaud-Antignac, A., …, & Sébille, V. (2016). Rasch-family models are more valuable than score-based approaches for analysing longitudinal patient-reported outcomes with missing data. Statistical Methods in Medical Research, 25(5), 2067–2087. https://doi.org/10.1177/0962280213515570.
Article
PubMed
Google Scholar