Skip to main content

Advertisement

Log in

Visualization and dynamics of multidimensional health-related quality-of-life-adjusted overall survival: a new analytic approach

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Background

Vesnarinone Trial (VesT) was a three-armed, placebo-controlled, randomized clinical trial designed to study the effects of 30 mg or 60 mg/day vesnarinone. Certain contradictory results involving patient health-related quality-of-life (HRQOL) and overall survival (OS) have made a definitive and unified conclusion difficult.

Methods

To reconcile these findings, we have focused on the HRQOL-adjusted OS, commonly known as quality-adjusted life years (QALYs). Currently, analyses of QALYs incorporate a single HRQOL subscale. However, the VesT HRQOL instrument had two subscales: physical (PHYS) and emotional (EMOT). We have developed new ways to visualize and compare EMOT- and PHYS-adjusted OS.

Results

In each VesT arm, there was an increased probability of superior EMOT-adjusted OS, compared to PHYS-adjusted OS. The magnitude of these findings was comparable across trial arms. Despite inferior survival and superior EMOT and PHYS scores, the 60-mg/day arm presents similar EMOT- and PHYS-adjusted OS compared to the placebo arm.

Conclusions

We have provided a fresh perspective on the complex interactions between multiple HRQOL dimensions and OS. These novel methods address the burgeoning need for robust information on the interplay between OS and HRQOL from a patient, clinical care and public policy perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spilker, B. (1996). Quality of life and pharmacoeconomics in clinical trials (2nd ed.). New York: Lippincott Williams & Williams.

    Google Scholar 

  2. Ware, J. E., Kosinski, M., Dewey, J. E., & Gandek, B. (2000) . SF-36 health survey: Manual and interpretation guide. Quality Metric Inc. Boston: Health Institute, New England Medical Center, 1993.

  3. Parasuraman, S., Hudes, G., Levy, D., Strahs, A., Moore, L., DeMarinis, R., et al. (2007). Comparison of quality-adjusted survival in patients with advanced renal cell carcinoma receiving first-line treatment with temsirolimus (TEMSR) or interferon-alpha (IFN) or the combination of IFN+TEMSR. Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings (Post-Meeting Edition), 25(18S), 5049.

  4. Kaarlola, A., Tallgren, M., & Pettil, V. (2006). Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients. Critical Care Medicine, 34(8), 2120–2126.

    Article  PubMed  Google Scholar 

  5. Muennig, P. A., & Gold, M. R. (2001). Using the years-of-healthy-life measure to calculate QALYs. American Journal of Preventive Medicine, 20(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  6. Sindelar, J. L., & Jofre-Bonet, M. (2004). Creating an aggregate outcome index: Cost-effectiveness analysis of substance abuse treatment. The Journal of Behavioral Health Services and Research, 31(3), 229–241.

    Article  PubMed  Google Scholar 

  7. Cohn, J. N., Goldstein, S. O., Greenberg, B. H., Lorell, B. H., Bourge, R. C., Jaski, B. E., et al. (1998). A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. The New England Journal of Medicine, 339, 1810–1816.

    Article  CAS  PubMed  Google Scholar 

  8. Rector, T. S., Kubo, S. H., & Cohn, J. H. (1993). Validity of the Minnesota Living with Heart Failure questionnaire as a measure of therapeutic response to enalapril or placebo. American Journal of Cardiology, 71, 1106–1107.

    Article  CAS  PubMed  Google Scholar 

  9. Torrance, G., & Feeny, D. (1989). Utilities and quality-adjusted life years. International Journal of Technology Assessment, 5, 559–575.

    Article  CAS  Google Scholar 

  10. Glasziou, P. P., Cole, B. F., Gelber, R. D., Hilden, J., & Simes, R. J. (1998). Quality adjusted survival analysis with repeated quality of life measures. Statistics in Medicine, 17, 1215–1229.

    Article  CAS  PubMed  Google Scholar 

  11. Goldhirsch, A., Gelber, R., Simes, R., Glasziou, P., & Coates, A. (1989). Costs and benefits of adjuvant therapy in breast cancer: A quality-adjusted survival analysis. Journal of Clinical Oncology, 7, 36–44.

    CAS  PubMed  Google Scholar 

  12. Glasziou, P. P., Simes, R. J., Gelber, & R. D. (1990). Quality adjusted survival analysis. Statistics in Medicine, 9, 1259–1276.

    Article  CAS  PubMed  Google Scholar 

  13. Gelber, R. D., Cole, B. F., Gelber, S., & Goldhirsch, A. (1995). Comparing treatments using quality-adjusted survival: The Q-TWiST method. American Statistician, 49, 161–169.

    Google Scholar 

  14. Ahlstrom, A., Tallgren, M., Peltonen, S., Rasanen, P., & Pettila, V. (2005). Survival and quality of life of patients requiring acute renal replacement therapy. Intensive Care Medicine, 31(9), 1222–1228.

    Article  PubMed  Google Scholar 

  15. Perkins, M., Howard, V., Wadley, V. G., Crowe, M., Safford, M. M., Haley, W. E., et al. (2013). Caregiving strain and all-cause mortality: evidence from the REGARDS study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68(4), 504–512.

    Article  Google Scholar 

  16. Nichol, M. B., Sengupta, N., & Globe, D. R. (2001). Evaluating quality-adjusted life years estimation of the Health Utility Index (HUI2) from the SF-36. Medical Decision Making, 21(2), 105–112.

    Article  CAS  PubMed  Google Scholar 

  17. Kamel, H., Johnston, S. C., Easton, J. D., & Kim, A. S. (2012). Cost-effectiveness of dabigatran compared with warfarin for stroke prevention in patients with atrial fibrillation and prior stroke or transient ischemic attack. Stroke, 43(3), 881–883.

    Article  PubMed  Google Scholar 

  18. Rogers, J. G., Bostic, R. R., Tong, K. B., Adamson, R., Russo, M., & Slaughter, M. S. (2012). Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circulation: Heart Failure, 5(1), 10–16.

    Google Scholar 

  19. Saarni, S., Suvisaari, J., Sintonen, H., Koskinen, S., Harkanen, T., & Lonngvist, J. (2007). The health-related quality of life impact of chronic conditions varied with age in general population. Journal of Clinical Epidemiology, 60(12), 1288–1297.

    Article  PubMed  Google Scholar 

  20. Ferguson, N. D., Scales, D. C., & Pinto, R., et al. (2013). Integrating mortality and morbidity outcomes: using quality-adjusted life years in critical trials. American Journal of Respiratory and Critical Care Medicine, 187(3), 256–261.

    Article  PubMed  Google Scholar 

  21. Lin, D. Y., Sun, W., & Ying, Z. (1999). Nonparametric estimation of the gap time distributions for serial events with censored data. Biometrika, 86, 59–70.

    Article  Google Scholar 

  22. Zhao, H., & Tsiatis, A. A. (1997). A consistent estimator for the distribution of quality adjusted survival time. Biometrika, 84, 339–348.

    Article  Google Scholar 

  23. Gill, R. D. (1983). Large sample behaviour of the product-limit estimator on the whole line. Annals of Statistics, 11, 49–58.

    Article  Google Scholar 

  24. Andrei, A. -C., & Murray, S. (2006). Estimating the quality-of-life-adjusted gap time distribution of successive events subject to censoring. Biometrika, 93(2), 343–355.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Wisconsin SDAC for providing the VesT dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adin-Cristian Andrei.

Appendix

Appendix

Commonly, individual \(i=1,\ldots, n\) time to event T i is subject to independent right-censoring by C i , hence the follow-up time \(\widetilde{T}_i={\text{minimum}}(T_ i, C_i)\) and the censoring indicator \(\Updelta_i=I(T_i \leq C_i)\). Both T i and C i are assumed to be continuous. HRQOL is measured using a preference-based questionnaire with several subscales. For simplicity, assume it only has two subscales, p = 1, 2. HRQOL on the pth scale, is quantified by a continuous-time stochastic process \(V^{(p)}(\cdot)\), with state space \(\mathcal{S}_p=\{0,1,\ldots, S_p\}\). Assume that the health states in \(\mathcal{S}_p\) are ordered increasingly, “0” being the worst and “S p ” the best state. For each individual \(i=1,\ldots, n\), assume that \(V_{i}^{(p)}(\cdot)\) and C i are independent and let a non-decreasing, known function \(Q^{(p)}(\cdot)\) assign utilities between 0 (state “0”) and 1 (state “S p ”) to each state in \(\mathcal{S}_p\). For example, one could think of \(V^{(1)}(\cdot)\) and \(V^{(2)}(\cdot)\) as being the emotional and physical health subscales in the VesT example. When using a generic pair \(\{V(\cdot),Q(\cdot)\}\), the HRQOL-adjusted lifetime is defined as

$$QT=\int\limits_{0}^{T}Q\{V(t)\}{\text {d}}t$$

and its observed version is

$$\widetilde{QT}=\int\limits_{0}^{\widetilde{T}}Q\{V(t)\}{\text {d}}t.$$

Since T is adjusted on two different HRQOL scales, the resulting Q (1) T and Q (2) T are correlated. Their joint distribution is necessary to perform testing for significance.

Assume the existence of a constant L > 0 such that P(T < L) = 1 and P(C > L) > 0. A technical assumption, first, we estimate the joint distribution of Q (1) T and Q (2) T, namely F 1,2(q 1q 2) = P(Q (1) T ≤ q 1Q (2) T ≤ q 2). Define H 1,2(q 1q 2) as P(Q (1) T > q 1, Q (2) T > q 2) and note that

$$F_{1,2}(q_1,q_2)= H_{1,2}(0,0)-H_{1,2}(q_1,0)-H_{1,2}(0,q_2)+H_{1,2}(q_1,q_2).$$

Thus, to estimate \(F_{1,2}(\cdot,\cdot)\) it suffices to estimate \(H_{1,2}(\cdot,\cdot)\). In the absence of censoring and based on a sample of size nH 1,2(q 1q 2) can be estimated by the empirical mean of the corresponding indicators of interest,

$$n^{-1}\sum\limits_{i=1}^{n}I\{ Q^{(1)}T_i > q_1, Q^{(2)}T_i > q_2 \}.$$

However, when censoring is present, define \(m^{(p)}_i(t)={\text {infimum}} \left[s \geq 0 ; \int_{0}^{s}Q^{(p)}\{V^{(p)}_{i}(u)\}{\text{d}}u \geq t \right]\) and D (p) i (t) = m (p) i (t) ∧ T i , for p = 1,2 and \(i=1,\ldots, n\). By convention, D (p) i (0) = 0. This expression states that D (p) i (t) marks the first time when the ith individual has accumulated at least t HRQOL-adjusted lifetime on the \(Q^{(p)}(\cdot)\) scale. Should this not happen until time T i , then D (p) i (t) is assigned the value T i . The key to producing a consistent estimator for the quantity of interest is to note that if \(\widetilde{Q^{(p)}T_i} > q_p\), then Q (p) T i  > q p and censoring time C i does not occur prior to D (p) i (q p ).

Consequently, if A (p) i (q p ) = I{Q (p) T i  > q p C i  > D (p) i (q p )} and \(B^{(p)}_i(q_p)=I\{\widetilde{Q^{(p)}T}_i > q_p \}\), then A (p) i (q p ) = B (p) i (q p ), where p = 1,2. Here, \(I\{ \cdot \}\) represents the indicator function. Define D (1,2) i (q 1q 2) to be the maximum of D (1) i (q 1) and D (2) i (q 2). An inverse probability-of-censoring weighted estimator becomes available after assessing when the indicator functions involved are completely observed. Further, should G(u) = P(C > u) be known

$$\widetilde{H}_{1,2}(q_1,q_2)=n^{-1}\sum\limits_{i=1}^{n} \frac{A^{(1)}_i(q_1)A^{(2)}_i(q_2)}{G\{ D^{(1,2)}_i(q_1,q_2)\}}$$

would represent an unbiased estimator for H 1,2(q 1q 2).

This assertion is true because

$$\begin{aligned} E\left[\frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}\right]&= E\left(E\left[\left.\frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2)\}}\right| T,V^{(1)}(\cdot),V^{(2)}(\cdot) \right]\right) \\ &\quad=E \left(I\{ Q^{(1)}T > q_1, Q^{(2)}T > q_2 \} E\left[\left.\frac{I\{C > D^{(1,2)}(q_1,q_2) \}}{G\{ D^{(1,2)}(q_1,q_2)\}}\right| T, V^{(1)}(\cdot), V^{(2)}(\cdot) \right] \right) \\ &\quad=E\{ I( Q^{(1)}T > q_1, Q^{(2)}T > q_2 ) \}=H_{1,2}(q_1,q_2). \end{aligned}$$

However, G(u) being unknown, it is estimated by the Kaplan–Meier estimator \(\widehat{G}(u)\) of the censoring time survival function computed using \(\{(\widetilde{T}_i,1-\Updelta_i);i=1,\ldots, n\}.\)

Estimator consistency

A consistent estimator for H 1,2(q 1q 2) is

$$\widehat{H}_{1,2}(q_1,q_2)=n^{-1}\sum\limits_{i=1}^{n} \frac{B^{(1)}_i(q_1)B^{(2)}_i(q_2)}{\widehat{G}\{ D^{(1,2)}_i(q_1,q_2)\}},$$

from which a consistent estimator \(\widehat{F}_{1,2}(q_1,q_2)\) of F 1,2(q 1q 2) becomes immediately available. Consistency of H 1,2(q 1q 2) is shown using arguments along the lines of [21] and [22]. Note that-1

$$\begin{aligned} \widehat{H}_{1,2}(q_1,q_2)-H_{1,2}(q_1,q_2)&= \widetilde{H}_{1,2}(q_1,q_2)-H_{1,2}(q_1,q_2) +\widehat{H}_{1,2}(q_1,q_2)-\widetilde{H}_{1,2}(q_1,q_2) \\ &=n^{-1}\sum\limits_{i=1}^{n} \left[ \frac{B^{(1)}_i(q_1)B^{(2)}_i(q_2)} {\widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}}-H_{1,2}(q_1,q_2)\right] \end{aligned}$$
(1)
$$+n^{-1}\sum\limits_{i=1}^{n}B^{(1)}_i(q_1)B^{(2)}_i(q_2) \frac{G\{D^{(1,2)}_i(q_1,q_2)\}-\widehat{G} \{D^{(1,2)}_i(q_1,q_2)\}}{G\{D^{(1,2)}_i(q_1,q_2) \} \widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}}.$$
(2)

The expression in (1) is a sum of zero-mean i.i.d. terms, so it converges to zero in probability. In addition, D (1,2) i (q 1q 2) < L < τ C : = sup{t;G(t) > 0} and \(\widehat{G}\) converges uniformly in probability to G on [0, τ C ). The term in (2) is bounded from above, in absolute value, by

$$\frac{{\text {sup}}\{|\widehat{G}(u)-G(u)|;u \leq \tau_C \}} {\widehat{G}(\tau_C)G(\tau_C)},$$

so it converges to zero, in probability. This shows that \(\widehat{H}_{1,2}(\cdot,\cdot)\) is a consistent estimator of \(H_{1,2}(\cdot,\cdot)\); hence, an estimator for \(F_{1,2}(\cdot,\cdot)\) can be derived easily.

Limiting distribution results

Let \(M^{c}(u)=I\{C \leq u, C \leq T)\}- \int_0^{u}I(\widetilde{T} \geq s){\text{d}}\Uplambda^{c}(s)\), where \(\Uplambda^{c}(s)=exp\{-G(s)\}\) represents the cumulative hazard function of the censoring distribution. Using Lemma 2.4 in [23], it follows that for all \(t\leq {\text{max}}\{\widetilde{T}_{j};j=1,\ldots, n\}\), we have that

$$\frac{G(t)-\widehat{G}(t)}{G(t)}= \int\limits_{0}^{t} \frac{\widehat{G}(u-)}{G(u)} \frac{\sum\nolimits_{j=1}^{n}{\text{d}}{M_{j}}^{c}(u)} {\sum\nolimits_{j=1}^{n}I(\widetilde{T}_{j} \geq u)}.$$

When t = D (1,2) i (q 1q 2) in the previous formula, one obtains that

$$\frac{G\{D^{(1,2)}_i(q_1,q_2)\}-\widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}} {G\{D^{(1,2)}_i(q_1,q_2)\}}= \int\limits_{0}^{L} I\{D^{(1,2)}_i(q_1,q_2) \geq u \}\frac{\widehat{G}(u-)}{G(u)} \frac{\sum\nolimits_{j=1}^{n}{\text{d}}{M_{j}}^{c}(u)} {\sum\nolimits_{j=1}^{n}I(\widetilde{T}_{j} \geq u)}.$$

Note that \(W_{1,2}(q_1,q_2):=n^{1/2} \{\widehat{H}_{1,2}(q_1,q_2)-H_{1,2}(q_1,q_2)\} =n^{1/2}\{\widetilde{H}_{1,2}(q_1,q_2)-H_{1,2}(q_1,q_2)\} +n^{1/2}\{\widehat{H}_{1,2}(q_1,q_2)-\widetilde{H}_{1,2}(q_1,q_2)\}\)

$$\begin{aligned} &=n^{-1/2} \sum_{i=1}^{n} \left[\frac{A^{(1)}_i(q_1)A^{(2)}_i(q_2)} {G\{D^{(1,2)}_i(q_1,q_2)\}}-H_{1,2}(q_1,q_2)\right] \\ &\quad+ n^{-1/2} \int\limits_{0}^{L}n^{-1}\sum_{i=1}^{n} \left[I\{D^{(1,2)}_i(q_1,q_2) \geq u\} \frac{A^{(1)}_i(q_1)A^{(2)}_i(q_2)} {\widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}}\right] \frac{\widehat{G}(u-)}{G(u)}\frac{\sum_{j=1}^{n}{\text{d}}{M_{j}}^{c}(u)} {n^{-1}\sum_{j=1}^{n}I\{\widetilde{T}_{j} \geq u\}}. \end{aligned}$$
(3)

Because

$$\frac{\widehat{G}(u-)}{G(u)} \frac{1}{n^{-1}\sum\nolimits_{j=1}^{n}I(\widetilde{T}_{j} \geq u)} \buildrel{{\text {a.s.}}}\over{\longrightarrow} \left\{P(\widetilde{T} \geq u)\right\}^{-1},$$

it follows that the second term in (3) can be written as

$$\begin{aligned} &n^{-1/2} \int\limits_{0}^{L}n^{-1}\sum_{i=1}^{n} \left[\left\{P(\widetilde{T} \geq u)\right\}^{-1} I\{D^{(1,2)}_i(q_1,q_2) \geq u\}\frac{A^{(1)}_i(q_1)A^{(2)}_i(q_2)} {\widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}}\right] \sum_{j=1}^{n}{\text{d}}{M_{j}}^{c}(u)+o_{P}(1) \\ &=n^{-1/2} \int\limits_{0}^{L} [P(\widetilde{T} \geq u)]^{-1}E\left[I\{D^{(1,2)}(q_1,q_2) \geq u\} \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{\widehat{G}\{D^{(1,2)}(q_1,q_2)\}}\right] \sum_{j=1}^{n}{\text{d}}{M_{j}}^{c}(u)+o_{P}(1) \\ &=n^{-1/2}\sum_{i=1}^{n} \int\limits_{0}^{L} [P(\widetilde{T} \geq u)]^{-1}E\left[I\{D^{(1,2)}(q_1,q_2) \geq u \} \frac{A^{(1)}(q_1)A^{(2)}(q_2)} {G\{ D^{(1,2)}(q_1,q_2) \}}\right] {\text{d}}{M_{i}}^{c}(u)+o_{P}(1) \\ &=n^{-1/2}\sum_{i=1}^{n} \int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)} {P(\widetilde{T} \geq u)}{\text{d}}{M_{i}}^{c}(u)+o_{P}(1), \end{aligned}$$

where

$$J_{1,2}(q_1,q_2,u):= E\left[I\{D^{(1,2)}(q_1,q_2) \geq u\}\frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}\right].$$

Then, one can further write

$$\begin{aligned} W_{1,2}(q_1,q_2)&=n^{-1/2} \sum\limits_{i=1}^{n} \left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)} {G\{ D^{(1,2)}(q_1,q_2) \}}-H_{1,2}(q_1,q_2) \right] \\ & \quad +n^{-1/2}\sum\limits_{i=1}^{n} \int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)} {P(\widetilde{T} \geq u)}{\text{d}}{M_{i}}^{c}(u)+o_{P}(1). \end{aligned}$$

Consequently, the asymptotic covariance of W 1,2(q 1q 2) and W 1,2(r 1r 2) is equal to

$$\begin{aligned} &E\left( \left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}-H_{1,2}(q_1,q_2) +\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M^{c}(u)} \right]\right. \\ &\times \left. \left[ \frac{A^{(1)}(r_1)A^{(2)}(r_2)}{G\{ D^{(1,2)}(r_1,r_2) \}}-H_{1,2}(r_1,r_2) +\int\limits_{0}^{L} \frac{J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M^{c}(u) }\right] \right) \\ &=E \left( \left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}-H_{1,2}(q_1,q_2) \right] \left[ \frac{A^{(1)}(r_1)A^{(2)}(r_2)}{G\{ D^{(1,2)}(r_1,r_2) \}}-H_{1,2}(r_1,r_2) \right] \right) \\ & +E \left( \left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}-H_{1,2}(q_1,q_2) \right] \int\limits_{0}^{L} \frac{J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \right) \end{aligned}$$
(4)
$$+E \left( \left[ \frac{A^{(1)}(r_1)A^{(2)}(r_2)}{G\{ D^{(1,2)}(r_1,r_2) \}}-H_{1,2}(r_1,r_2) \right] \int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \right)$$
(5)
$$+E\left\{ \int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \int_{0}^{L} \frac{J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \right\}.$$
(6)

Note that the expression in (4) is equal to

$$\begin{aligned} &E\left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}} \int\limits_{0}^{L} \frac{J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \right] \\ &-E\left\{ \int\limits_{0}^{L} H_{1,2}(q_1,q_2) \frac{J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{M}^{c}(u) \right\} \end{aligned}$$
(7)

Terms (4) and (5) are both equal to

$$-\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}{\Uplambda}^{c}(u),$$

using arguments as in [24]. Standard results for stochastic integrals with respect to martingales lead to the fact that the expression in (6) is equal to

$$\begin{aligned} &E \left\{\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)J_{1,2}(r_1,r_2,u)}{P^{2}(\widetilde{T} \geq u)}d{\Uplambda}^{c}(u)d\langle M^{c}(u), M^{c}(u)\rangle \right\} \\ &=E\left\{\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)J_{1,2}(r_1,r_2,u)}{P^{2}(\widetilde{T} \geq u)}I(\widetilde{T} \geq u){\text{d}}\Uplambda^{c}(u) \right\} \\ &=\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}\Uplambda^{c}(u). \end{aligned}$$

By applying the multivariate central limit theorem, it follows that \(W_{1,2}(\cdot,\cdot)\) converges in finite-dimensional distribution to a 4-variate zero-mean Gaussian process whose covariance function is equal to

$$\begin{aligned} \sigma_{H_{1,2}}(q_1,q_2;r_1,r_2) &=E \left( \left[ \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}-H_{1,2}(q_1,q_2) \right] \left[ \frac{A^{(1)}(r_1)A^{(2)}(r_2)}{G\{ D^{(1,2)}(r_1,r_2) \}}-H_{1,2}(r_1,r_2) \right] \right) \\ & \quad -\int\limits_{0}^{L} \frac{J_{1,2}(q_1,q_2,u)J_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}\Uplambda^{c}(u). \end{aligned}$$

Recall that F 1,2(q 1q 2) = H 1,2(0, 0) −H 1,2(q 1, 0) − H 1,2(0, q 2) + H 1,2(q 1q 2). Using the previous findings, it follows that \(\sqrt{n}\{\widehat{F}_{1,2}(q_1,q_2)-F_{1,2}(q_1,q_2)\}\) converges in finite-dimensional distribution to a 4-variate zero-mean Gaussian process with covariance function

$$\begin{aligned} &\sigma_{F_{1,2}}(q_1,q_2;r_1,r_2)= {\text{Cov}} \left\{ H_{1,2}(0,0)-H_{1,2}(q_1,0)-H_{1,2}(0,q_2)+H_{1,2}(q_1,q_2), \right.\\ &\left.\quad H_{1,2}(0,0)-H_{1,2}(r_1,0)-H_{1,2}(0,r_2)+H_{1,2}(r_1,r_2) \right\} \end{aligned}$$

Define R 1,2(q 1q 2u) = J 1,2(0, 0, u) − J 1,2(q 1, 0, u) − J 1,2(0, q 2u) + J 1,2(q 1q 2u) and

$$\begin{aligned} \varvec{\Upgamma}_{1,2}(q_1,q_2)&= \frac{A^{(1)}(0)A^{(2)}(0)}{G\{ D^{(1,2)}(0,0) \}}- \frac{A^{(1)}(q_1)A^{(2)}(0)}{G\{ D^{(1,2)}(q_1,0) \}}- \frac{A^{(1)}(0)A^{(2)}(q_2)}{G\{ D^{(1,2)}(0,q_2) \}}\\ & \quad + \frac{A^{(1)}(q_1)A^{(2)}(q_2)}{G\{ D^{(1,2)}(q_1,q_2) \}}- F_{1,2}(q_1,q_2). \end{aligned}$$

After involved, but direct, computations, it follows that σ F_1,2(q 1q 2;r 1r 2) is equal to

$$E \left[\varvec{\Upgamma}_{1,2}(q_1,q_2) \varvec{\Upgamma}_{1,2}(r_1,r_2) \right] -\int\limits_{0}^{L}\frac{{\bf R}_{1,2}(q_1,q_2,u){\bf R}_{1,2}(r_1,r_2,u)}{P(\widetilde{T} \geq u)}{\text{d}}\Uplambda^{c}(u).$$

Variance estimation

Following standard arguments, the cumulative hazard \(\Uplambda^{c}(t)\) of the censoring distribution is estimated by the Nelson–Aalen estimator

$$\widehat{\Uplambda}^{c}(t)=\int\limits_{0}^{t} \frac{\sum\nolimits_{i=1}^{n} (1-\Updelta_{i})dI(\widetilde{T}_{i} \leq u)} {\sum\nolimits_{i=1}^{n}I(\widetilde{T}_{i} \geq u)}.$$

The value of \(P(\widetilde{T} \geq u)\) can be consistently estimated by \(n^{-1} \sum\nolimits_{i=1}^{n} I(\widetilde{T}_{i}\geq u)\), while an estimator for J 1,2(q 1q 2u) is given by

$$\hat{J}_{1,2}(q_1,q_2,u)=n^{-1}\sum\limits_{i=1}^{n} I\{D^{(1,2)}_i(q_1,q_2) \geq u\} \frac{B^{(1)}_i(q_1)B^{(2)}_i(q_2)}{\widehat{G}\{D^{(1,2)}_i(q_1,q_2)\}}.$$

Furthermore, \(\varvec{\Upgamma}_{1,2}(q_1,q_2)\) and R 1,2(q 1q 2u) are estimated by

$$\begin{aligned} \widehat{\varvec{\Upgamma}}_{1,2}(q_1,q_2)&= n^{-1}\sum\limits_{i=1}^{n} \left[\frac{B^{(1)}_i(0)B^{(2)}_i(0)}{\widehat{G}\{ D^{(1,2)}_i(0,0) \}}- \frac{B^{(1)}_i(q_1)B^{(2)}_i(0)}{\widehat{G}\{ D^{(1,2)}_i(q_1,0) \}}- \frac{B^{(1)}_i(0)B^{(2)}_i(q_2)}{\widehat{G}\{ D^{(1,2)}_i(0,q_2) \}} \right. \\ & \quad +\left. \frac{B^{(1)}_i(q_1)B^{(2)}_i(q_2)}{\widehat{G}\{ D^{(1,2)}_i(q_1,q_2) \}} \right] -\widehat{F}_{1,2}(q_1,q_2) \end{aligned}$$

and \({\bf \widehat{R}}_{1,2}(q_1,q_2,u)= \hat{J}_{1,2}(0,0,u)- \hat{J}_{1,2}(q_1,0,u)- \hat{J}_{1,2}(0,q_2,u)+ \hat{J}_{1,2}(q_1,q_2,u)\), respectively.

In conclusion,

$$\begin{aligned} \widehat{\sigma}_{\widehat{H}_{1,2}}(q_1,q_2;r_1,r_2) &= n^{-1}\sum\limits_{i=1}^{n} \left( \left[ \frac{B^{(1)}_i(q_1)B^{(2)}_i(q_2)}{\widehat{G}\{ D^{(1,2)}_i(q_1,q_2) \}}- \widehat{H}_{1,2}(q_1,q_2) \right] \right. \\ & \quad \times \left. \left[ \frac{B^{(1)}_i(r_1)B^{(2)}_i(r_2)}{\widehat{G}\{ D^{(1,2)}_i(r_1,r_2) \}}-\widehat{H}_{1,2}(r_1,r_2) \right] \right) -\int\limits_{0}^{L} \frac{\hat{J}_{1,2}(q_1,q_2,u)\hat{J}_{1,2}(r_1,r_2,u)} {n^{-1}\sum\limits_{j=1}^{n}I(\widetilde{T}_{j} \geq u)}d\widehat{\Uplambda}^{c}(u) \end{aligned}$$

and

$$\widehat{\sigma}_{\widehat{F}_{1,2}}(q_1,q_2;r_1,r_2)= \widehat{\varvec{\Upgamma}}_{1,2}(q_1,q_2) \widehat{\varvec{\Upgamma}}_{1,2}(r_1,r_2) -\int\limits_{0}^{L} \frac{{\bf \widehat{R}}_{1,2}(q_1,q_2,u){\bf \widehat{R}}_{1,2}(r_1,r_2,u)} {n^{-1}\sum\nolimits_{j=1}^{n}I(\widetilde{T}_{j} \geq u)}d\widehat{\Uplambda}^{c}(u)$$

are consistent estimators of σ H_1,2(q 1q 2;r 1r 2) and σ F_1,2(q 1q 2;r 1r 2), respectively.

Confidence intervals

Based on these derivations, a 100 × (1 − α)-level confidence interval for TOF(t) is

\([\widehat{TOF}(t)-z_{1-\alpha} \sqrt{\widehat{\sigma}_{H_{1,2}}(t,0;0,t)/n}, \widehat{TOF}(t)+z_{1-\alpha} \sqrt{\widehat{\sigma}_{H_{1,2}}(t,0;0,t)/n}]\), where n is the group size and z 1-α is the upper α th quantile of the N(0, 1) distribution.

We now focus on the two-group setting. Let n 1 and n 2 be the sample sizes of the two groups, respectively. A 100 × (1 − α)-level confidence interval for TOFgroup 1(t) − TOFgroup 2(t) is

$$\begin{aligned} &{\left[\widehat{TOF}_{\rm group\,1}(t)-\widehat{TOF}_{\rm group\,2}(t)- z_{1-\alpha}\sqrt{\widehat{\sigma}_{H^{\rm group\,1}_{1,2}}(t,0;0,t)/n_1+\widehat{\sigma}_{H^{\rm group\,2}_{1,2}}(t,0;0,t)/n_2}, \right.}\\ &{\left.\widehat{TOF}_{\rm group\,1}(t)-\widehat{TOF}_{\rm group\,2}(t)+ z_{1-\alpha}\sqrt{\widehat{\sigma}_{H^{\rm group\,1}_{1,2}}(t,0;0,t)/n_1+\widehat{\sigma}_{H^{\rm group\,2}_{1,2}}(t,0;0,t)/n_2} \right].} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrei, AC., Grady, K.L. Visualization and dynamics of multidimensional health-related quality-of-life-adjusted overall survival: a new analytic approach. Qual Life Res 23, 1411–1419 (2014). https://doi.org/10.1007/s11136-013-0608-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-013-0608-1

Keywords

Navigation