Skip to main content
Log in

Reflected Brownian motion with drift in a wedge

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study reflecting Brownian motion with drift constrained to a wedge in the plane. Our first set of results provides necessary and sufficient conditions for existence and uniqueness of a solution to the corresponding submartingale problem with drift, and show that its solution possesses the Markov and Feller properties. Next, we study a version of the problem with absorption at the vertex of the wedge. In this case, we provide a condition for existence and uniqueness of a solution to the problem and some results on the probability of the vertex being reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bass, R.F.: Stochastic Processes, vol. 33. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  2. Böttcher, B., Schilling, R., Wang, J.: Lévy matters. iii. Lecture Notes in Mathematics 2099 (2013)

  3. Bousquet-Melou, M., Elvey Price, A., Franceschi, S., Hardouin, C., Raschel. K.: On the stationary distribution of reflected brownian motion in a wedge: differential properties. arXiv (2022)

  4. Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab, 49–90 (2001)

  5. Chen, H., Shen, X., Yao, D.D.: Brownian approximations of multiclass open-queueing networks. Oper. Res. 50(6), 1032–1049 (2002)

    Article  Google Scholar 

  6. Chen, H., Zhang, H.: Diffusion approximations for re-entrant lines with a first-buffer-first-served priority discipline. Queueing Syst. 23(1), 177–195 (1996)

    Article  Google Scholar 

  7. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. Elsevier, Amsterdam (2000)

    Google Scholar 

  8. Costantini, C., Kurtz, T.G.: Existence and uniqueness of reflecting diffusions in cusps. Electron. J. Probab. 23(1–21) (2018)

  9. Dai, J.G., Michael Harrison, J.: Reflected brownian motion in an orthant: numerical methods for steady-state analysis. Ann. Appl. Probab., 65–86 (1992)

  10. Dai, J.G., Williams, R.J.: Existence and uniqueness of semimartingale reflecting brownian motions in convex polyhedrons. Theory Probab. Appl. 40(1), 1–40 (1996)

    Article  Google Scholar 

  11. Dante DeBlassie, R., Toby, E.H.: On the semimartingale representation of reflecting brownian motion in a cusp. Probab. Theory Relat. Fields 94, 505–524 (1993)

    Article  Google Scholar 

  12. Dante DeBlassie, R., Toby, E.H.: Reflecting brownian motion in a cusp. Trans. Am. Math. Soc. 339(1), 297–321 (1993)

    Article  Google Scholar 

  13. Doob, J.L.: Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Stat. 393–403 (1949)

  14. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a riemann-hilbert problem. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 47(3), 325–351 (1979)

    Article  Google Scholar 

  15. Franceshi, S., Raschel, K.: A dual skew symmetry for transient reflected brownian motion in an orthant. Queueing Syst. 102(2), 123–141 (2022)

    Article  Google Scholar 

  16. Fukushima, M., Tomisaki, M.: Construction and decomposition of reflecting diffusions on lipschitz domains with hölder cusps. Probab. Theory Relat. Fields 106(4), 521–557 (1996)

    Article  Google Scholar 

  17. Harrison, J.M.: The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab. 10(4), 886–905 (1978)

    Article  Google Scholar 

  18. Harrison, J.M., Reiman, M.I.: On the distribution of multidimensional reflected brownian motion. SIAM J. Appl. Math. 41(2), 345–361 (1981)

    Article  Google Scholar 

  19. Harrison, J.M., Reiman, M.I.: Reflected brownian motion on an orthant. Ann. Probab., 302–308 (1981)

  20. Kang, W., Ramanan, K.: A Dirichlet process characterization of a class of reflected diffusions. Ann. Probab. 38(3), 1062–1105 (2010)

    Article  Google Scholar 

  21. Kang, W., Ramanan, K.: On the submartingale problem for reflected diffusions in domains with piecewise smooth boundaries. Ann. Probab. 45(1), 404–468 (2017)

    Article  Google Scholar 

  22. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)

    Google Scholar 

  23. Lakner, P., Reed, J., Zwart, B.: On the roughness of the paths of RBM in a wedge. Ann. Inst. Henri Poincaré Probab. Stat. 55(3), 1566–1598 (2019)

    Article  Google Scholar 

  24. Le Gall, J.-F.: Brownian Motion, Martingales, and Stochastic Calculus. Springer, Berlin (2016)

  25. Parthasarathy, K.R.: Probability Measures on Metric Spaces, vol. 352. American Mathematical Society (2005)

  26. Peterson, W.P.: A heavy traffic limit theorem for networks of queues with multiple customer types. Math. Oper. Res. 16(1), 90–118 (1991)

    Article  Google Scholar 

  27. Protter, P.E.: Stochastic Integration and Differential Equations. Springer, Berlin (2005)

    Book  Google Scholar 

  28. Ramanan, K.: Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11(36), 934–992 (2006)

    Google Scholar 

  29. Ramanan, K., Reiman, M.I.: Fluid and heavy traffic diffusion limits for a generalized processor sharing model. Ann. Appl. Probab. 13(1), 100–139 (2003)

    Article  Google Scholar 

  30. Reiman, M.I.: Open queueing networks in heavy traffic. Math. Oper. Res. 9(3), 441–458 (1984)

    Article  Google Scholar 

  31. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer, Berlin (2013)

    Google Scholar 

  32. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, vol. I. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  33. Skorokhod, A.V.: Stochastic equations for diffusion processes in a bounded region (Translated by N. Greenleaf). Theory Probab. Appl. VI(3), 264–274 (1961)

    Article  Google Scholar 

  34. Taylor, L.M., Williams, R.J.: Existence and uniqueness of semimartingale reflecting brownian motions in an orthant. Probab. Theory Relat. Fields 96(3), 283–317 (1993)

    Article  Google Scholar 

  35. Varadhan, S.R.S., Williams, R.J.: Brownian motion in a wedge with oblique reflection. Commun. Pure Appl. Math. 38(4), 405–443 (1985)

    Article  Google Scholar 

  36. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues. Springer, Berlin (2002)

    Book  Google Scholar 

  37. Williams, R.J.: Recurrence classification and invariant measure for reflected Brownian motion in a wedge. Ann. Probab., 758–778 (1985)

  38. Williams, R.J.: Brownian Motion in a Wedge with Oblique Reflection at the Boundary, vol. 8320794. Stanford University (1983)

  39. Williams, R.J.: Reflected brownian motion in a wedge: semimartingale property. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 69(2), 161–176 (1985)

    Article  Google Scholar 

  40. Williams, R.J.: Local time and ex cursions of reflected brownian motion in a wedge. Publ. Res. Inst. Math. Sci. 23(2), 297–319 (1987)

    Article  Google Scholar 

  41. Williams, R.J.: Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse. Queueing Syst. 30(1), 27–88 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lakner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 8.1

There exists a function \(f_{\varepsilon ,C}\in C_b^2(S)\) satisfying

$$\begin{aligned} f_{\varepsilon ,C}(x,y)= {\left\{ \begin{array}{ll} 0,\ \textrm{if}\ (x,y)\in S\setminus S^{\varepsilon /3},\\ y,\ \textrm{if}\ (x,y)\in S^{2\varepsilon /3}, y\le C, \end{array}\right. } \end{aligned}$$

such that in addition \(f_{\varepsilon ,C}(x,0) =0\) for all \(x\ge 0\), and \(D_i f_{\varepsilon , C}\ge 0\) on \(\partial S_i\).

Proof

Let \(h_1\in C_b^2({{\mathcal {R}}})\) such that \(h_1(x) \ge 0\) for all \(x\in {{\mathbb {R}}}\) and

$$\begin{aligned} h_1(x)= {\left\{ \begin{array}{ll} 0,\ \textrm{if}\ x\le \varepsilon /3,\\ 1,\ \textrm{if}\ x\ge 2\varepsilon /3. \end{array}\right. } \end{aligned}$$

Let \(h_2\in C_b^2({{\mathcal {R}}})\) such that \(h_2(y)=y\) if \(y\le C\). Then

$$\begin{aligned} f_{\varepsilon ,C} =h_1\left( x -\frac{y}{\tan \xi }\right) h_2(y)\quad (x,y)\in S \end{aligned}$$

satisfies the requirements of the lemma. Note that for any \(\delta >0\) we have \((x,y)\in S^\delta \) if and only if \(x-y/\tan \xi \ge \delta .\) Using this fact repeatedly one can verify the above statement by straightforward calculation. \(\square \)

Remark 8.2

There are slightly different definitions for the term “augmented filtration" in the literature; we use this term as defined in [32], Definition II.67.3. Let \(\mathbb {P}\) be an arbitrary probability measure on \({{\mathcal {M}}}\), and let \((C_S, {{\mathcal {F}}}, ({{\mathcal {F}}}_t), \mathbb {P})\) be the augmentation of the probability space \((C_S,{{\mathcal {M}}},({{\mathcal {M}}}_t),\mathbb {P})\), in the above sense. It is known that right-continuous martingales (submartingales) on \((C_S,\mathcal{M},(\mathcal{M}_t),\mathbb {P})\) are also right-continuous martingales (submartingales) on \((C_S,\mathcal{F},(\mathcal{F}_t),\mathbb {P})\) (Lemma II.67.10 in [32]). The probability measure \(\mathbb {P}\) in the second probability space is the extension of \(\mathbb {P}\) from \({{\mathcal {M}}}\) to \({{\mathcal {F}}}\), without changing the notation. Also, it follows from the martingale characterization of Brownian motion (Theorem 3.3.16 in [22]) that a Brownian motion on \((C_S,\mathcal{M},(\mathcal{M}_t),\mathbb {P})\) is also a Brownian motion on \((C_S,\mathcal{F},(\mathcal{F}_t),\mathbb {P})\).

Remark 8.3

For the convenience of the reader in this remark we shall recall the notion of the Stochastic Differential Equation with Reflection (SDER) from Definition 2.4 of Kang and Ramanan [21]. In that paper the definition appears for arbitrary dimension and for a more general domain, but here we specify it to our case for the domain given by S in 2 dimensions. Let \(d:S\rightarrow {{\mathbb {R}}}^2\) be a set-valued map from \(\partial S\) to the class of subsets of \({{\mathbb {R}}}^2\) satisfying conditions (d1) and (d2) in Sect. 2.1, then extend it to the interior of S by defining \(d(x)=\{0\}\) if x lies in the interior of S. The other inputs of the SDER are the drift and dispersion coefficients \(b:S\mapsto {{\mathbb {R}}}^2\) and \(\sigma :S\mapsto {{\mathbb {R}}}^{2\times 2}\). A weak solution to the SDER consists of a filtered probability space \((\Omega , {\mathcal F}, \{{{\mathcal {F}}_t}\})\), a family of probability measures \(\{\mathbb {P}^z,z\in S\}\), and a pair of continuous adapted processes (ZW) (each Z and W 2-dimensional), satisfying the following conditions for each \(z\in S\):

  1. 1.

    W is a standard 2-dimensional Brownian motion on the above filtered probability space starting at zero under \(\mathbb {P}^z\);

  2. 2.

    \(\int _0^t|b(Z(s))|ds +\int _0^t|\sigma (Z(s))|^2ds<\infty \), for all \(t\in [0,\infty )\), \(\mathbb {P}^z\)-a.s.;

  3. 3.

    Defining the 2-dimensional processes X and Y as

    $$\begin{aligned} X(t)= z+ \int _0^t b(Z(s))ds +\int _0^t\sigma (Z(s)) dW(s),\quad t\in [0,\infty ) \end{aligned}$$
    (48)

    and \(Y=Z-X\), the couple (ZY) solves the ESP for X associated with \((S,d(\cdot ))\), almost surely under \(\mathbb {P}^z\);

  4. 4.

    The set \(\{t\in [0,\infty ): Z(t)\in \partial S\}\) has zero Lebesgue measure, \(\mathbb {P}^z\)-a.s.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakner, P., Liu, Z. & Reed, J. Reflected Brownian motion with drift in a wedge. Queueing Syst 105, 233–270 (2023). https://doi.org/10.1007/s11134-023-09893-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-023-09893-9

Keywords

Mathematics Subject Classification

Navigation