Skip to main content
Log in

Optimal staffing for ticket queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Ticket queues are popular in many service systems. Upon arrival, each customer is issued a numbered ticket and receives service on a first-come-first-served basis according to the ticket number. There is no physical queue; customers may choose to walk away and return later (before their numbers are called) to receive service. We study the problem of optimal staffing in such a system with two capacity levels, where the staffing decision can only be based on ticket numbers, as opposed to the physical queue length in a traditional system. Using renewal reward theorem, we first derive the long-run average total cost (including customer delay and abandonment costs, operating cost and cost for changing staffing levels) and then obtain the optimal solution using fractional programming. In addition, we pursue a random-walk analysis, which leads to some highly accurate approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ancker, C.J., Jr., Gafarian, A.V.: Some queuing problems with balking and reneging. I. Oper. Res. 11(1), 88–100 (1963)

    Article  Google Scholar 

  2. Ancker, C.J., Jr., Gafarian, A.V.: Some queuing problems with balking and reneging. II. Oper. Res. 11(6), 928–937 (1963)

    Article  Google Scholar 

  3. Armony, M., Plambeck, E., Seshadri, S.: Sensitivity of optimal capacity to customer impatience in an unobservable \(M/M/S\) queue (Why you shouldn’t shout at the DMV). Manuf. Serv. Oper. Manag. 11(1), 19–32 (2009)

  4. Baccelli, F., Boyer, P., Hebuterne, G.: Single-server queues with impatient customers. Adv. Appl. Probab. 16(3), 887–905 (1984)

    Article  Google Scholar 

  5. Bell, C.E.: Turning off a server with customers present: is this any way to run an \(M/M/c\) queue with removable servers? Oper. Res. 23(3), 571–574 (1975)

    Article  Google Scholar 

  6. Borst, S., Mandelbaum, A., Reiman, M.I.: Dimensioning large call centers. Oper. Res. 52(1), 17–37 (2004)

    Article  Google Scholar 

  7. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statistical analysis of a telephone call center: a queueing-science perspective. J. Am. Stat. Assoc. 100(1), 35–50 (2005)

    Google Scholar 

  8. Cox, D.R., Smith, W.L.: Queues. CRC Press, Florida (1961)

    Google Scholar 

  9. Fu, M.C., Marcus, S.I., Wang, I.: Monotone optimal policies for a transient queueing staffing problem. Oper. Res. 48(2), 327–331 (2000)

    Article  Google Scholar 

  10. Gans, N., Zhou, Y.: A call-routing problem with service-level constraints. Oper. Res. 51(2), 255–271 (2003)

    Article  Google Scholar 

  11. Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf. Serv. Oper. Manag. 4(3), 208–227 (2002)

    Article  Google Scholar 

  12. Gavish, B., Schweitzer, P.J.: The Markovian queue with bounded waiting time. Manag. Sci. 23(12), 1349–1357 (1977)

    Article  Google Scholar 

  13. Gnedenko, B.V., Kovalenko, I.: Introduction to Queueing Theory. Birkhauser Boston Inc., Boston (1989)

    Book  Google Scholar 

  14. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3), 567–588 (1981)

    Article  Google Scholar 

  15. Harrison, J.M., Zeevi, A.: A method for staffing large call centers based on stochastic fluid models. Manuf. Serv. Oper. Manag. 7(1), 20–36 (2005)

    Article  Google Scholar 

  16. Hokstad, P.: A single server queue with constant service time and restricted accessibility. Manage. Sci. 25(2), 205–208 (1979)

    Article  Google Scholar 

  17. Huang, J., Mandelbaum, A., Zhang, H., Zhang, J.: Refined models for efficiency-driven queues with applications to delay announcements and staffing. Oper. Res. 65(5), 1380–1397 (2017)

    Article  Google Scholar 

  18. Jennings, O.B., Pender, J.: Comparisons of ticket and standard queues. Queueing Syst. 84(1), 145–202 (2016)

    Article  Google Scholar 

  19. Mandelbaum, A., Shimkin, N.: A model for rational abandonments from invisible queues. Queueing Syst. 36(1–3), 141–173 (2000)

    Article  Google Scholar 

  20. Mandelbaum, A., Zeltyn, S.: Staffing many-server queues with impatient customers: constraint satisfaction in call centers. Oper. Res. 57(5), 1189–1205 (2009)

    Article  Google Scholar 

  21. Omahen, K., Marathe, V.: Analysis and applications of the delay cycle for the \(M/M/c\) aueueing system. J. Assoc. Comput. Mach. 25(2), 283–303 (1978)

    Article  Google Scholar 

  22. Pang, G., Perry, O.: A logarithmic safety staffing rule for contact centers with call blending. Manag. Sci. 61(1), 73–91 (2015)

    Article  Google Scholar 

  23. Reynolds, J.F.: The stationary solution of a multiserver queueing model with discouragement. Oper. Res. 16(1), 64–71 (1968)

    Article  Google Scholar 

  24. Ross, S.M.: Stochastic Processes. John Wiley & Sons, INC., New Jersey (1996)

    Google Scholar 

  25. Stanford, R.E.: Reneging phenomenal in single-server queues. Math. Oper. Res. 4(1), 162–178 (1979)

    Article  Google Scholar 

  26. Topkis, D.: Supermodularity and Complementarity. Princeton University Press, New Jersey (1998)

    Google Scholar 

  27. Van Dijk, N.M.: Queueing systems with restricted workload: an explicit solution. J. Appl. Probab. 22(2), 393–400 (1990)

    Article  Google Scholar 

  28. Xu, S., Gao, L., Ou, J.: Service performance analysis and improvement for a ticket queue with balking customers. Manag. Sci. 53(2), 971–990 (2007)

    Article  Google Scholar 

  29. Yadin, M., Naor, P.: On queueing systems with variable service capacities. Naval Res. Logist. Quart. 14(1), 43–53 (1967)

    Article  Google Scholar 

  30. Zhang, B., van Leeuwaarden, J., Zwart, B.: Staffing call centers with impatient customers: refinements to many-server asymptotics. Oper. Res. 60(2), 461–474 (2012)

    Article  Google Scholar 

  31. Zhang, Z.G.: Performance analysis of a queue with congestion-based staffing policy. Manag. Sci. 55(2), 240–251 (2009)

    Article  Google Scholar 

  32. Zohar, E., Mandelbaum, A., Shimkin, N.: Adaptive behavior of impatient customers in tele-queues: theory and empirical support. Manag. Sci. 48(4), 566–583 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Smeal College of Penn State U was the last academic affiliation of the late Professor Susan Xu.

7 Appendix

7 Appendix

Proof of Lemma 1

First we look at \(\mathsf{E}T_{11}\). Let \(\widetilde{\mathbf{D}}_1\) be the \(N\times N\)-dimensional matrix obtained by removing the entries in generator \(\mathbf{D}\) associated with state \((1,N+1)\):

(7.1)

From the phase-type distribution theory,

$$\begin{aligned} \mathsf{E}T_1=(\underbrace{0,\dots ,0}_{L+1},1,0,\dots ,0)\times (-\widetilde{\mathbf{D}}_1^{-1})\times \mathbf {e'}, \end{aligned}$$
(7.2)

where \({\mathbf {e}}'\) is the transpose of the \(N-\)dimensional unit vector. It is direct to verify the inverse of \(\widetilde{\mathbf{D}}_1\), denoted by \(\widetilde{\mathbf{D}}_1^{-1}=(\widetilde{d}_{ij})_{N\times N}\), can be written as

(7.3)

\(\mathsf{E}T_{11}\) directly follows (7.2)–(7.3). Note that the expectation of \(T_{12}\) is \((1+\mathsf{E}X)\) multiplied by \(\mathsf{E}T_{11}\) replacing \(\theta _1\) and \(\rho _1\) by \(\theta _2\) and \(\rho _2\), respectively. Hence, \(\mathsf{E}T_{12}\) can be obtained by (7.2)–(7.3) replacing \(\theta _1\) and \(\rho _1\) by \(\theta _2\) and \(\rho _2\), respectively. \(\square \)

Proof of Lemma 3

First we consider the customer delay cost incurred by the period \(T_{11}\). For the Markov chain \(\{(S_1(t),S_2(t),Q(t)), t\ge 0\}\) given in (2.2) starting with state \((1,0,L+1)\), let V(1, 0, i) be the number of visits to state (1, 0, i) during \(T_1\), \( i=0,\cdots , N.\) In view of the definition of \(\widetilde{\mathbf{D}}_1^{-1}\) given by (7.3). Let \(f_{L+1,i}\) be the probability that the chain visits state (1, 0, i) from state \((1,0,L+1)\) and \(f_{i,i}\) the probability that the chain revisits state (1, 0, i), \(i=0,1,\cdots , N\). From the theory of absorbing property of the first passage probability of the transient Markov chain, we know that V(1, 0, i) is a geometric random variable with

$$\begin{aligned} \mathsf{Pr}\left( V(1,0,i)=n\right) =f_{L+1,i}\times (1-f_{ii})\times (f_{ii})^{n-1}, \ \ n=1, 2, \cdots , i\ne L+1, \\ \mathsf{Pr}\left( V(1,0,L+1)=n\right) =(1-f_{L+1,L+1})\times (f_{L+1,L+1})^{n-1}, \ \ n=1, 2, \cdots , i=L+1. \end{aligned}$$

The first passage probabilities \(f_{L+1,i}\) and \(f_{ii}\) can be computed by

$$\begin{aligned}&f_{L+1,i}=\frac{\sum _{n=1}^\infty p_{L+2,i+1}^n}{\sum _{n=0}^\infty p_{i+1,i+1}^n}, \ i\ne L+1,\\&f_{ii}=\frac{\sum _{n=1}^\infty p_{i+1,i+1}^n}{\sum _{n=0}^\infty p_{i+1,i+1}^n}, \ i=0,1,\cdots ,N. \end{aligned}$$

Here, \(p^n_{ij}\) is the n-step transition probability for the transition probability matrix given by

$$\begin{aligned} \mathbf{P}=(p_{ij})_{(N+1)\times (N+1)}=\frac{1}{\lambda +\mu } \widetilde{\mathbf{D}}_1+I. \end{aligned}$$

Here \(\widetilde{\mathbf{D}}_1\) is given by (7.1), and I is an identity matrix. This implies

$$\begin{aligned} \left( I-\mathbf {P}\right) ^{-1}=(\lambda +\mu _1) \left( -\widetilde{\mathbf{D}}_1\right) ^{-1}. \end{aligned}$$

In view of (7.3), we have

$$\begin{aligned} f_{L+1,i}=\frac{{{\widetilde{d}}}_{L+2,i+1}}{{{\widetilde{d}}}_{i+1,i+1}} \ \ \text{ and } \ \ f_{ii}=\frac{(\lambda +\mu _1){{\widetilde{d}}}_{i+1,i+1}+1}{(\lambda +\mu _1){{\widetilde{d}}}_{i+1,i+1}}. \end{aligned}$$

We have

$$\begin{aligned} \mathsf{E} V(1,0,i)=- (\lambda +\mu _1){{\widetilde{d}}}_{L+2,i+1}, \ i=0,\cdots , N. \end{aligned}$$

This implies that the expected sojourn times in states (1, i) are

$$\begin{aligned} \frac{1}{\lambda +\mu _1} \mathsf{E} V(1,0,i)=- {{\widetilde{d}}}_{L+2,i+1}, \ i=0,\cdots , N. \end{aligned}$$
(7.4)

Given the ticket queue length i, the corresponding number of waiting customers follows a binomial distribution with mean \((1-{\alpha }_1)i\). Then, the customer delay cost in \(T_{11}\) is

$$\begin{aligned}&h\left[ (1-{\alpha }_1)(-{{\widetilde{d}}}_{L+2,3})+2(1-{\alpha }_1)(-\widetilde{d}_{L+2,4})+\cdots \right. \nonumber \\&\quad \left. +(N-1)(1-{\alpha }_1)(-\widetilde{d}_{L+2,N+1})\right] . \end{aligned}$$
(7.5)

The customer delay cost in \(T_{12}\) can be obtained by (7.5) in which \(\mu _1\) is replaced by \(\mu _2\). Hence the proof of the lemma is completed. \(\square \)

Proof of Lemma 4

First, according to Theorem 1 of Omahen and Marathe [21],

$$\begin{aligned} \mathsf{E} \Big (W \Big | \text{ arriving } \text{ during } (T^{(s)}_{21}+T^{(s)}_{22})\Big )= \frac{\lambda \overline{{\alpha }}_2}{\mu (\mu -\lambda \overline{{\alpha }}_2)} + \frac{\mathsf{E}(T^{(s)}_{21})^2}{2\mathsf{E} T^{(s)}_{21}}. \end{aligned}$$
(7.6)

The Laplace–Stieltjes transform of \(T^{(s)}_{21}\) is given by

$$\begin{aligned} \mathsf{E} e^{-s T^{(s)}_{21}}=\sum _{i=0}^{N-L^+}\genfrac(){0.0pt}1{N-L^+}{i}{\alpha }_2^{N-L^+-i}\overline{{\alpha }}_2^i \left( \frac{\mu }{\mu +s} \right) ^i =\left( \frac{\mu +s{\alpha }_2}{\mu +s} \right) ^{N-L^+}. \end{aligned}$$

This implies

$$\begin{aligned} \mathsf{E}T^{(s)}_{21}= & {} \frac{(N-L^+)\overline{{\alpha }}_2}{\mu }, \nonumber \\ \mathsf{E} \Big (T_{21}^{(s)}\Big )^2= & {} \frac{\overline{{\alpha }}_2^2(N-L^+)^2+(1-{\alpha }_2^2)(N-L^+)}{\mu ^2}. \end{aligned}$$
(7.7)

Using (7.6), we have

$$\begin{aligned}&\mathsf{E} \Big (W \Big | \text{ arriving } \text{ during } (T^{(s)}_{21}+T^{(s)}_{22})\Big )\nonumber \\&\qquad = \frac{\lambda \overline{{\alpha }}_2}{\mu (\mu -\lambda \overline{{\alpha }}_2)} + \frac{\overline{{\alpha }}_2(N-L^+)+1+{\alpha }_2}{2\mu }. \end{aligned}$$
(7.8)

By (2.6),

$$\begin{aligned} \mathsf{E}(T^{(s)}_{21}+T^{(s)}_{22})&=\Big [p_2 \mathsf{E}\tau _2 +p_3 \left( \mathsf{E} \tau _2+\mathsf{E} \tau _3\right) +\cdots + p_{N-L+1}\sum \limits _{i=1}^{N-L}\mathsf{E}\tau _{i+1}\Big ]\\&=\frac{ \overline{{\alpha }}_2(N-L^+)}{\mu -\lambda \overline{{\alpha }}_2}. \end{aligned}$$

Hence, the lemma for \(L>-1\) follows from \(T^{(s)}_{23}=0\), (2.14) and (7.8).

Now we consider the case \(L=-1\). According to the definition of \(T^{(s)}_{23}\) and \(\tau _{11}\) and \(\tau _{12}\) in (2.6), we have

$$\begin{aligned} \mathsf{E}\Big (W \Big |\hbox { arrivals during}\ T^{(s)}_{23}\Big )&=\frac{\mu _1}{\mu }\mathsf{E}\Big (W \Big |\hbox { arrivals during}\ \tau _{12}\Big )\nonumber \\&\quad + \frac{\mu _2}{\mu }\mathsf{E}\Big (W \Big |\hbox { arrivals during}\ \tau _{11}\Big ). \end{aligned}$$
(7.9)

Taking derivative with resect to “s" in (2.8)–(2.9), we have

$$\begin{aligned} \mathsf{E}\tau _{11}=\frac{1/(\lambda +\mu _1)}{1-\lambda \mu _2/[\mu (\lambda +\mu _1)]} +\frac{\lambda /(\lambda +\mu _1)}{1-\lambda \mu _2/[\mu (\lambda +\mu _1)]} \mathsf{E}\tau _2 +\frac{\lambda \mu _1/[\mu (\lambda +\mu _1)]}{1-\lambda \mu _2/[\mu (\lambda +\mu _1)]}\mathsf{E}\tau _{12},\\ \mathsf{E}\tau _{12}=\frac{1/(\lambda +\mu _2)}{1-\lambda \mu _1/[\mu (\lambda +\mu _2)]} +\frac{\lambda /(\lambda +\mu _2)}{1-\lambda \mu _1/[\mu (\lambda +\mu _2)]} \mathsf{E}\tau _2 +\frac{\lambda \mu _2/[\mu (\lambda +\mu _2)]}{1-\lambda \mu _1/[\mu (\lambda +\mu _2)]}\mathsf{E}\tau _{11}. \end{aligned}$$

Therefore, we can write down \(\mathsf{E}\Big (W|\text { arriving during } \tau _{11} \Big )\) and \(\mathsf{E}\Big (W|\text { arriving during } \tau _{12} \Big )\) as

$$\begin{aligned} \mathsf{E}\Big (W|\text { arriving during } \tau _{11} \Big )= & {} \frac{{\lambda }/{(\lambda +\mu _1)}}{1-\lambda \mu _2/[\mu (\lambda +\mu _1)]} \cdot \frac{\mathsf{E}\tau _2}{\mathsf{E}\tau _{11}} \cdot \mathsf{E} \Big (W|\text { arriving during } \tau _2 \Big ) \\&+\frac{\lambda \mu _1/[\mu (\lambda +\mu _1)]}{1-\lambda \mu _2/[\mu (\lambda +\mu _1)]} \cdot \frac{\mathsf{E}\tau _{12}}{\mathsf{E}\tau _{11}} \cdot \mathsf{E} \Big (W|\text { arriving during } \tau _{12} \Big ),\nonumber \\ \mathsf{E}\Big (W|\text { arriving during } \tau _{12}\Big )= & {} \frac{ \lambda /(\lambda +\mu _2)}{1-\lambda \mu _1/[\mu (\lambda +\mu _2)]} \cdot \frac{\mathsf{E}\tau _2}{\mathsf{E}\tau _{12}}\cdot \mathsf{E}\Big (W|\text { arriving during } \tau _2 \Big ) \nonumber \\&+\frac{\lambda \mu _2/[\mu (\lambda +\mu _2)]}{1-\lambda \mu _1/[\mu (\lambda +\mu _2)]} \cdot \frac{\mathsf{E}\tau _{11}}{\mathsf{E}\tau _{12}} \cdot \mathsf{E}\Big (W|\text { arriving during } \tau _{11} \Big ). \end{aligned}$$

By Theorem 2 of Omaben and Marathe (1978),

$$\begin{aligned} \mathsf{E}\Big (W|\text { arriving during } \tau _2 \Big )=\frac{1}{\mu -\lambda \overline{{\alpha }}_2}. \end{aligned}$$

Hence, we have

$$\begin{aligned}&\mathsf{E}\Big (W|\text { arriving during } \tau _{11} \Big )\nonumber \\&\qquad =\mathsf{E}\Big (W|\text { arriving during } \tau _{12} \Big ) =\frac{\lambda }{(\mu +\lambda {\alpha }_2)(\mu -\lambda \overline{{\alpha }}_2)}. \end{aligned}$$
(7.10)

Recalling from (2.6) that

$$\begin{aligned} \mathsf{E}T^{(s)}_{23}&={\alpha }_2^N\mathsf{E}\tau _{11}+(1-{\alpha }_2^N) \Big (\frac{\mu _1}{\mu }\mathsf{E}\tau _{12} +\frac{\mu _2}{\mu }\mathsf{E}\tau _{11} \Big ), \end{aligned}$$
(7.11)

we know that

$$\begin{aligned}&\mathsf{E}\Big (W|\text { arriving during } T^{(s)}_{23} \Big )\nonumber \\&\quad = \Big ({\alpha }_2^N+(1-{\alpha }_2^N) \frac{\mu _2}{\mu }\Big )\frac{\mathsf{E} \tau _{11}}{\mathsf{E}T^{(s)}_{23}} \mathsf{E}\Big (W|\text { arriving during } \tau _{11} \Big )\nonumber \\&\qquad +(1-{\alpha }_2^N) \frac{\mu _1}{\mu }\frac{\mathsf{E} \tau _{12}}{\mathsf{E}T^{(s)}_{23}}\mathsf{E}\Big (W|\text { arriving during } \tau _{12} \Big ). \end{aligned}$$
(7.12)

Combining (7.10)–(7.12) yields that

$$\begin{aligned}&\mathsf{E}T^{(s)}_{23} \times \mathsf{E}\Big (W|\text { arriving during } T^{(s)}_{23}\Big )\nonumber \\&\qquad =\frac{\lambda }{\mu -\lambda \overline{{\alpha }}_2}\frac{\alpha _2^N\mu _1(\mu _2-\mu _1)+\mu _1(\lambda +\mu _1)+\mu _2(\lambda +\mu _2) }{\mu _1\mu _2(\mu +2\lambda )(\mu -\lambda \overline{\alpha }_2)}. \end{aligned}$$

The lemma for \(L=-1\) directly follows from (2.14) and (7.8). \(\square \)

Proof of Lemma 6

In view of Lemma 3, we know that

$$\begin{aligned} \mathsf{E}T_{10}=\frac{1}{\lambda +\mu _1}\mathsf{E} V(1,0,0). \end{aligned}$$

By (7.3)–(7.4), we have the lemma for \(\mathsf{E}T_{10}\). Now consider \(\mathsf{E}T_{20}\). Let \(\tau ^{(0)}_{1i}\) is the accumulative time for one server idle during \(\tau _{1i}, i=1,2\). Then we have

$$\begin{aligned} \mathsf{E} \tau ^{(0)}_{11}= & {} \frac{1}{\lambda +\mu _1}+\frac{\lambda }{\lambda +\mu _1} \Big [ \frac{\mu _2}{\mu }\mathsf{E} \tau ^{(0)}_{11}+\frac{\mu _1}{\mu }\mathsf{E} \tau ^{(0)}_{12}\Big ],\\ \mathsf{E} \tau ^{(0)}_{12}= & {} \frac{1}{\lambda +\mu _2}+\frac{\lambda }{\lambda +\mu _2} \Big [ \frac{\mu _2}{\mu }\mathsf{E} \tau ^{(0)}_{11}+\frac{\mu _1}{\mu }\mathsf{E} \tau ^{(0)}_{12}\Big ]. \end{aligned}$$

This gives that

$$\begin{aligned} \mathsf{E}T_{20}= & {} \Big [{\alpha }_2^{N}+\frac{\mu _2}{\mu }(1-{\alpha }_2^N) \Big ] \mathsf{E}\tau ^{(0)}_{11}+\frac{\mu _1}{\mu }(1-{\alpha }_2^N) \mathsf{E}\tau ^{(0)}_{12}\nonumber \\= & {} \frac{{\alpha }_2^N\mu _1(\mu _2-\mu _1)+\mu _2(\lambda +\mu _2)+\mu _1(\lambda +\mu _1) }{\mu _1\mu _2(\mu +2\lambda )}, \end{aligned}$$

which prove the lemmas for \(\mathsf{E}T_{20}\). \(\square \)

Proof of Lemma 7

The first three results directly follow from the random-walk theory (see, for example, [24]). (iv), by noting that T is a stopping time for the sequence \(\{Y_n, n\ge 1\}\), follows from Wald’s equation. Now we show (v). Let \({{{\mathcal {F}}}}_n\) be the sigma field generated by \(\{(X_i,Y_i),i=1,\dots ,n \}\). Note both \(\{S_n\}\) and \(\{Y_n\}\) are adapted to the filtration \(\{ {\mathcal {F}}_n, n\ge 1 \}\). Hence

$$\begin{aligned} {E}\Big (\sum _{i=1}^nS_{i-1}Y_i\Big |{\mathcal {F}}_{n-1}\Big )= \sum _{i=1}^{n-1}S_{i-1}Y_i+{E}(S_{n-1}Y_n|{\mathcal {F}}_{n-1}) = \sum _{i=1}^{n-1}S_{i-1}Y_i+S_{n-1}{E}Y_n, \end{aligned}$$
(7.13)

where we use the fact that \(Y_n\) is independent of \({\mathcal {F}}_{n-1}\). Taking expectation on both sides of (7.13), we have

$$\begin{aligned} {E} \Big (\sum _{i=1}^nS_{i-1}Y_i\Big ) ={E} \Big ( \sum _{i=1}^{n-1}S_{i-1}Y_i \Big )+(\mathsf{E} S_{n-1})\times {E}Y_n =\cdots ={E}\Big (\sum _{i=1}^{n-1}S_i\Big )\times \mathsf{E} Y_1. \end{aligned}$$

Hence,

$$\begin{aligned} {E} \Big (\sum _{i=1}^TS_{i-1}Y_i\Big )= & {} \mathsf{E} Y_1 \times {E}\Big (\sum _{i=1}^{T-1}S_i\Big )= \mathsf{E} Y_1 \times \Big [ {E}\Big (\sum _{i=1}^{T}S_i\Big ) -{E}S_T \Big ]\nonumber \\= & {} \mathsf{E} Y_1 \times \Big [ {E}\Big (\sum _{i=1}^{T}S_i\Big ) -\gamma \times {E}T \Big ]. \end{aligned}$$
(7.14)

Now we consider \({E}\Big (\sum _{i=1}^{T}S_i\Big )\). Write \(X_i=\xi _i+\gamma \), where \(\xi _i\)’s are i.i.d., and \({E}\xi _i=0\), \(\textsf {Var}(\xi _i)=\sigma ^2\), we have

$$\begin{aligned} \sum _{i=1}^{T}S_i= \sum _{i=1}^{T}\sum _{n=1}^{i}X_n= & {} \sum _{n=1}^{T}(T-n+1)X_n=TS_T-\sum _{n=1}^{T}(n-1)(\xi _n+\gamma ) \\= & {} TS_T-\frac{\gamma }{2}T(T-1)-\sum _{n=1}^{T}(n-1)\xi _n. \end{aligned}$$

The last term above is a martingale. Hence

$$\begin{aligned} {E}\Big (\sum _{i=1}^{T}S_i\Big ) ={E}(TS_T)-\frac{\gamma }{2}{E}T^2 +\frac{\gamma }{2}{E}T. \end{aligned}$$
(7.15)

Applying optimal stopping theorem to the martingale \(\{ (S_n-n\gamma )^2-n\sigma ^2 \}\) yields

$$\begin{aligned} {E}\Big (S_T-T\gamma \Big )^2=\sigma ^2{E}T ~~\Rightarrow & {} ~~{E}(S_T-T\gamma )^2=\sigma ^2{E}T \nonumber \\\Rightarrow & {} ~~ {E}S_T^2+\gamma ^2{E}T^2-2\gamma {E}(S_TT) =\sigma ^2{E}T \nonumber \\\Rightarrow & {} ~~ {E}(S_TT)=\frac{{E}S_T^2 }{2\gamma }-\frac{1-\gamma ^2}{2\gamma }{E}T +\frac{\gamma }{2}{E}T^2.\nonumber \\ \end{aligned}$$
(7.16)

Plug (7.16) into (7.15), and we have

$$\begin{aligned} {E}\Big (\sum _{i=1}^{T}S_i\Big ) =\frac{{E}S_T^2}{2\gamma }+\frac{2\gamma ^2-1}{2\gamma }{E}T. \end{aligned}$$

Since, by \(\mathsf{E} S_T=\gamma \cdot \mathsf{E} T=A\pi _A-B(1-\pi _A)\),

$$\begin{aligned} {E}S_T^2=A^2\pi _A+B^2(1-\pi _A)=(A-B)\gamma {E}T+AB, \end{aligned}$$

we simplify \({E}\Big (\sum _{i=1}^{T}S_i \Big )\) as

$$\begin{aligned} {E}\Big (\sum _{i=1}^{T}S_i\Big ) = \Big (\frac{A-B}{2}+\gamma -\frac{1}{2\gamma } \Big ) {E}T +\frac{AB}{2\gamma }. \end{aligned}$$

Thus, by (7.14), we have

$$\begin{aligned} {E} \Big (\sum _{i=1}^TS_{i-1}Y_i\Big )= & {} \mathsf{E} Y_1 \times \Big [\Big (\frac{A-B}{2} +\gamma -\frac{1}{2\gamma } \Big ){E}T+\frac{A B}{2\gamma } -\gamma {E}T \Big ]\\= & {} \mathsf{E} Y_1 \times \Big [\Big (\frac{A-B}{2}-\frac{1}{2\gamma } \Big ){E}T +\frac{A B}{2\gamma } \Big ]. \end{aligned}$$

This gives (v). Therefore, the lemma is proved. \(\square \)

Proof of Lemma 8

Going along the line of the proof of Lemma 7, the lemma can be proved similarly. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Xu, S.H., Yao, D.D. et al. Optimal staffing for ticket queues. Queueing Syst 102, 309–351 (2022). https://doi.org/10.1007/s11134-022-09854-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-022-09854-8

Keywords

Mathematics Subject Classification

Navigation