Skip to main content
Log in

Stein’s method for diffusive limits of queueing processes

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Donsker’s theorem is perhaps the most famous invariance principle result for Markov processes. It states that, when properly normalized, a random walk behaves asymptotically like a Brownian motion. This approach can be extended to general Markov processes whose driving parameters are taken to a limit, which can lead to insightful results in contexts like large distributed systems or queueing networks. The purpose of this paper is to assess the rate of convergence in these so-called diffusion approximations, in a queueing context. To this end, we extend the functional Stein method, introduced for the Brownian approximation of Poisson processes, to two simple examples: the single-server queue and the infinite-server queue. By doing so, we complete the recent applications of Stein’s method to queueing systems, with results concerning the whole trajectory of the considered process, rather than its stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields 84, 297–322 (1990)

    Article  Google Scholar 

  2. Borovkov, A.A.: Limit laws for queueing processes in multichannel systems. Sibirsk Mat. 8, 983–1004 (1967)

    Google Scholar 

  3. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  4. Braverman, A., Dai, J.G.: Stein’s method for steady-state diffusion approximations of \(M/Ph/n+M\) systems. Ann. Appl. Probab. 27, 550–581 (2017)

    Article  Google Scholar 

  5. Braverman, A., Dai, J.G., Feng, J.: Stein’s method for steady-state diffusion approximations: an introduction through the Erlang-A and Erlang-C models. Stoch. Syst. 6, 301–366 (2016)

    Article  Google Scholar 

  6. Coutin, L., Decreusefond, L.: Stein’s method for Brownian approximations. Commun. Stoch. Anal. 7, 349–372 (2013)

    Google Scholar 

  7. Coutin, L., Decreusefond, L.: Stein’s method for rough paths. Potential Anal. (2019). https://doi.org/10.1007/s11118-019-09773-z

    Article  Google Scholar 

  8. Decreusefond, L.: The Stein–Dirichlet–Malliavin method. In: ESAIM: Proceedings, p. 11 (2015)

  9. Decreusefond, L., Moyal, P.: Stochastic Modeling and Analysis of Telecom Networks. Wiley, New York (2012)

    Book  Google Scholar 

  10. Ethier, S., Kurtz, T.: Markov Processes : Characterizations and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  11. Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  12. Gaunt, R.E., Walton, N.: Stein’s method for the single server queue in heavy traffic. Stat. Probab. Lett. 156, 108566 (2020)

    Article  Google Scholar 

  13. Kasprzak, M.J.: Diffusion approximations via Stein’s method and time changes. arXiv:1701.07633 (2017)

  14. Privault, N.: Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales. Lecture Notes in Mathematics, vol. 1982. Springer, Berlin (2009)

    Book  Google Scholar 

  15. Robert, P.: Stochastic Networks and Queues. Springer, Berlin (2003)

    Book  Google Scholar 

  16. Shih, H.-H.: On Stein’s method for infinite-dimensional Gaussian approximation in abstract Wiener spaces. J. Funct. Anal. 261, 1236–1283 (2011)

    Article  Google Scholar 

  17. Shwartz, A., Weiss, A.: Large Deviations For Performance Analysis: Queues, Communication and Computing. Chapman and Hall, London (1995)

    Google Scholar 

  18. Stein, C.: A Bound for the Error in the Normal Approximation to the Distribution of a Sum of Dependent Random Variables. The Regents of the University of California, Los Angeles (1972)

    Google Scholar 

  19. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Decreusefond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Moment bound for Poisson variables

By following closely Chapter 2 in [3], we show hereafter a moment bound for the maximum of n Poisson variables. (Notice that, contrary to Exercise 2.18 in [3], we do not assume here that the Poisson variables are independent.)

Proposition 4

Let \(n\in {{\mathbb {N}}}\) and let \(X_i,\, i=1,\ldots ,n\), be Poisson random variables of parameter \(\nu \). Then, for some c depending only on \(\nu \), we have that

$$\begin{aligned} {\mathbf {E}}\left[ \max _{i=1,\ldots ,n}X_i\right] \le c\, {\log n \over \log \log n}{.} \end{aligned}$$
(47)

Proof

Denote, for all i, \(Z_i=X_i-\nu \), and by \(\varPsi _{Z_i}\) the moment generating function of \(Z_i\). By Jensen’s inequality and the monotonicity of \(\exp (.)\) we get that

$$\begin{aligned} \exp \left( u{\mathbf {E}}\left[ \max _{i=1,\ldots ,n}Z_i\right] \right)\le & {} {\mathbf {E}}\left[ \max _{i=1,\ldots ,n}\exp (uZ_i)\right] \le \sum _{i=1}^n{\mathbf {E}}\left[ \exp (uZ_1)\right] \\\le & {} n\exp \left( \varPsi _{Z_i}(u)\right) . \end{aligned}$$

After some quick algebra, this readily implies that

$$\begin{aligned} {\mathbf {E}}\left[ \max _{i=1,\ldots ,n}Z_i\right]&\le \inf _{u\in {\mathbb {R}}}\left( \frac{\log n+\nu \left( e^u-u-1\right) }{u}\right) \\&= \frac{\log n+\nu \left( e \frac{a}{W(a)}-1-W(a)-1\right) }{1+W(a)}, \end{aligned}$$

where W is the so-called Lambert function, solving the equation \(W(x)e^{W(x)}=x\) over \([-1/e,\infty ]\), and \(a=\frac{\log (n/e^{\nu })}{e^\nu }\). This entails in turn that

$$\begin{aligned} {\mathbf {E}}\left[ \max _{i=1,\ldots ,n}X_i\right] \le \nu e \frac{a}{W(a)}-\nu +\nu =\frac{\log {(n/e^{\nu })}}{W(\log (n/e^{\nu })/e^{\nu })}{.} \end{aligned}$$

We conclude by observing that \(W(z)\ge \log (z) - \log \log (z)\) for all \(z >e\). Therefore, there exists \(c>0\) such that, for \(n\ge \exp \left( e^{\nu +1}+\nu \right) \),

$$\begin{aligned} {\mathbf {E}}\left[ \max _{i=1,\ldots ,n}X_i\right] \le \frac{\log {(n/e^{\nu })}}{\log (\log (n/e^{\nu })/e^{\nu }) -\log \log (\log (n/e^{\nu })/e^{\nu })} \le c\, {\log n \over \log \log n}, \end{aligned}$$

which completes the proof. \(\square \)

B Proof of Proposition 2

Fix n throughout this section and denote, for all \(i=0,...,n-1\) and \((x,z) \in {\mathbb {R}}^2\),

$$\begin{aligned} \alpha _{i}(x,z)={\mathbf {1}}_{C_{{t^n_i}}}(x,z),\quad \quad \beta _i(x,z)=\int _{t^n_i}^{t^n_{i+1}}{\mathbf {1}}_{C_{u}}(x,z)\text { d}u. \end{aligned}$$

Proof of (i)

Recall (42), and fix two indexes \(0\le i <j \le n-1\). We have that

$$\begin{aligned}&\int \int u^{\sharp }_iu^{\sharp }_j\text { d}\nu ^\sharp _n= \int \int \left( \alpha _{i+1}- \alpha _i\right) \left( \alpha _{j+1}-\alpha _j \right) \text { d}\nu ^\sharp _n\nonumber \\&\qquad +\mu \int \int \beta _i\left( \alpha _{j+1}-\alpha _j\right) \text { d}\nu ^\sharp _n\nonumber \\&\qquad +\mu \int \int \beta _j\left( \alpha _{i+1}-\alpha _i\right) \text { d}\nu ^\sharp _n{+\mu ^2 \int \int \beta _j\beta _j\text { d}\nu ^\sharp _n}\nonumber \\&\quad =: I_1 +I_2 +I_3+I_4, \end{aligned}$$
(48)

where straightforward computations show that

$$\begin{aligned} I_1&=\lambda n\left( 2 e^{-\mu (t^n_j-t^n_i)} - e^{-\mu (t^n_j-t^n_{i+1})} - e^{-\mu (t^n_j-t^n_{i-1})}\right) ;\\ I_2&={\lambda n\over \mu }\left( 2 e^{-\mu (t^n_j-t^n_i)} - e^{-\mu (t^n_j-t^n_{i+1})} - e^{-\mu (t^n_j-t^n_{i-1})}\right) - \lambda \left( e^{-\mu t_{j+1}^n} - e^{-\mu t^n_j}\right) ;\\ I_3&={\lambda n\over \mu }\left( -2 e^{-\mu (t^n_j-t^n_i)} + e^{-\mu (t^n_j-t^n_{i+1})} + e^{-\mu (t^n_j-t^n_{i-1})}\right) ;\\ I_4&={\lambda n\over \mu }\left( -2 e^{-\mu (t^n_j-t^n_i)} + e^{-\mu (t^n_j-t^n_{i+1})} + e^{-\mu (t^n_j-t^n_{i-1})}\right) + \lambda \left( e^{-\mu t_{j+1}^n} - e^{-\mu t^n_j}\right) . \end{aligned}$$

Adding up the above in (48) yields the result. \(\square \)

Proof of (ii)

For all \(0 \le i,j,k \le n-1\), we write

$$\begin{aligned} I_{i,j,k}:= & {} \int _{{\mathbb {R}}^2} |u^{\sharp }_iu^{\sharp }_{j}u^{\sharp }_{k}|\text { d}\nu ^\sharp _n\le \int \left| (\alpha _{i+1} - \alpha _{i})(\alpha _{j+1} - \alpha _{j})(\alpha _{k+1}-\alpha _{k})\right| \text { d}\nu ^\sharp _n\nonumber \\&+ \int \left| (\alpha _{i+1} - \alpha _i)(\alpha _{j+1} - \alpha _j)\mu \beta _k\right| \text { d}\nu ^\sharp _n\nonumber \\&+ \int \left| (\alpha _{j+1} - \alpha _j)(\alpha _{k+1} - \alpha _k)\mu \beta _i\right| \text { d}\nu ^\sharp _n\nonumber \\&+ \int \left| (\alpha _{i+1} - \alpha _i)(\alpha _{k+1} - \alpha _k)\mu \beta _j\right| \text { d}\nu ^\sharp _n+\int \left| \left( \alpha _{i+1} - \alpha _i\right) \mu ^2\beta _j\beta _k\right| \text { d}\nu ^\sharp _n\nonumber \\&+\int \left| \left( \alpha _{j+1} - \alpha _j\right) \mu ^2\beta _i\beta _k\right| \text { d}\nu ^\sharp _n+\int \left| \left( \alpha _{k+1} - \alpha _k\right) \mu ^2\beta _i\beta _j\right| \text { d}\nu ^\sharp _n\nonumber \\&+\int \left| \mu ^3\beta _i\beta _j\beta _k\right| \text { d}\nu ^\sharp _n=: \sum _{l=1}^8 I_{i,j,k}^l. \end{aligned}$$
(49)

It can be easily retrieved that

$$\begin{aligned} I_{i,i,i}^1&=n\left( \frac{\lambda }{n}-\frac{\lambda }{\mu }\left( 1-e^{-\frac{\mu T}{n}}\right) \left( 1-e^{\mu T{i+1 \over n}}\right) \right) \le {\lambda \over \mu };\\ I_{i,j,k}^1&=0,\quad 1\le i<j<k \le n;\\ I_{i,i,k}^1&={\lambda n\over \mu }\left( e^{\mu t^n_{i+1}} - e^{\mu t^n_{i}}\right) \left( e^{-\mu t^n_{k}} - e^{-\mu t^n_{k+1}} \right) \le {\lambda T^2\over \mu n},\quad i=j<k, \end{aligned}$$

and the other cases can be treated similarly. Also, simple computations show that if \(i<j\)

$$\begin{aligned} \mu \int \left| (\alpha _{i+1} - \alpha _i)(\alpha _{j+1} - \alpha _j)\beta _k\right| \text { d}\nu ^\sharp _n\le \lambda \left( e^{\mu t^n_{i+1}} - e^{\mu t^n_i}\right) \left( e^{-\mu t^n_j} - e^{-\mu t^n_{j+1}} \right) \le {\lambda T^2\over n^2}, \end{aligned}$$

whereas if \(i=j\), the above integral is upper bounded by

$$\begin{aligned} 2\lambda T\left( 2+e^{-\mu t^n_{i+1}}-e^{-\mu t^n_i}-2e^{-\frac{\mu T}{n}}\right) \le \frac{2\lambda \mu T^2}{n}T^2. \end{aligned}$$

It readily follows that in all cases, \(I_{i,j,k}^2,I_{i,j,k}^3\) and \(I_{i,j,k}^4\) are less than \({c\, n^{-1}}\) for some constant c. Reasoning similarly, we also obtain that, for all ijk,

$$\begin{aligned} \mu ^2\int \left| (\alpha _{i+1} - \alpha _i)\mu ^2\beta _j\beta _k\right| \text { d}\nu ^\sharp _n&\le \frac{\mu ^2}{n}\left( \frac{\lambda }{n}-\frac{\lambda }{\mu }\left( 1-e^{-\frac{\mu T}{n}}\right) \left( 1-e^{\mu T{i+1 \over n}}\right) \right) \\&\le {\lambda \over \mu n^2}T, \end{aligned}$$

so that in all cases \(I_{i,j,k}^5,I_{i,j,k}^6\) and \(I_{i,j,k}^7\) are less than \({c \, n^{-2}}\) for some c. Finally, observing that, for all uvw,

$$\begin{aligned} \int \int {\mathbf {1}}_{C_u}{\mathbf {1}}_{C_v}{\mathbf {1}}_{C_w}\lambda \mu e^{-\mu y}\text { d}x\text { d}y=\frac{\lambda }{\mu }(e^{-\mu (\max (u,v,w)-\min (u,v,w))}-e^{-\mu \max (u,v,w)}), \end{aligned}$$

we can similarly bound \(I_{i,j,k}^8\) by \(c\,{n^{-2}}\) for all ijk. To summarize, all the \(I_{i,j,k}\) are less than \(c\,{n^{-2}}\) for some c, except for the \(I^1_{i,i,i}\), \(i=1,...,n\), which are bounded by a constant but are only n in number, and all terms where one index appears twice, which are less than \(c\,n^{-1}\) for some c, but are only \(n^2\) in number. Hence, (ii) follows. \(\square \)

Proof of (iii)

We have, for all \(0\le i \le n-1\),

$$\begin{aligned}&\int \int u^{\sharp }_iu^{\sharp }_i\text { d}\nu ^\sharp _n=\int \int \alpha _{i+1}\text { d}\nu ^\sharp _n+\int \int \alpha _{i}\text { d}\nu ^\sharp _n-2 \int \int \alpha _{i+1}\alpha _{i}\text { d}\nu ^\sharp _n\nonumber \\&\qquad +2\mu \int \int \beta _i\alpha _{i+1}\text { d}\nu ^\sharp _n-2\mu \int \int \beta _i\alpha _{i}\text { d}\nu ^\sharp _n+\mu ^2\int \int \beta _i\beta _i\text { d}\nu ^\sharp _n\nonumber \\&\quad =J_1+J_2+J_3+J_4+J_5+J_6, \end{aligned}$$
(50)

where straightforward calculations show that

$$\begin{aligned} J_1&=\frac{\lambda n }{\mu }\left( 1-e^{-\mu t^n_{i+1}}\right) ;\quad J_2=\frac{\lambda n}{\mu }\left( 1-e^{-\mu t^n_i}\right) ;\\ J_3&=-2\frac{\lambda n}{\mu }\left( e^{-\frac{\mu T}{n}}-e^{-\mu t^n_{i+1}}\right) ;\quad J_4 =2\frac{\lambda n}{\mu }(1-e^{-\frac{\mu T}{n}})-2\lambda e^{-\mu t^n_{i+1}};\\ J_5&=-2\frac{\lambda n}{\mu }(1-e^{-\frac{\mu T}{n}})-2\frac{\lambda n}{\mu }(e^{-\mu t^n_{i+1}}-e^{-\mu t^n_i});\\ J_6&=\lambda \left( 2+2e^{-\mu t^{n}_{i+1}}+\frac{2n}{\mu }(e^{-\mu t_{i+1}^{n}}-e^{-\mu t^n_i}+e^{\frac{-\mu T}{n}}-1)\right) . \end{aligned}$$

Recalling (37), adding up the \(J_j\), \(j=1,...,6\), concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besançon, E., Decreusefond, L. & Moyal, P. Stein’s method for diffusive limits of queueing processes. Queueing Syst 95, 173–201 (2020). https://doi.org/10.1007/s11134-020-09658-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-020-09658-8

Keywords

Mathematics Subject Classification

Navigation