Skip to main content
Log in

Optimal pricing for a GI/M/k/N queue with several customer types and holding costs

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper studies optimal pricing for a GI/M/k/N queueing system with several types of customers. An arrival joins the queue if the price of service is not higher than the maximum amount that the arrival is willing to pay, and this maximum amount is defined by the customer type. A system manager chooses a price depending on the number of customers in the system. In addition, the system incurs holding costs when there are customers waiting in the queue for their services. Service times and holding costs do not depend on customer types. The holding costs are nondecreasing and convex with respect to the number of customers in the queue. This paper describes average reward optimal, canonical, bias optimal, and Blackwell optimal policies for this pricing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feinberg, E.A., Yang, F.: Optimality of trunk reservation for an M/M/k/N queue with several customer types and holding costs. Probab. Eng. Inf. Sci. 25, 537–560 (2011)

    Article  Google Scholar 

  2. Giloni, A., Koçağa, Y.L., Troy, P.: State dependent pricing policies: differentiating customers through valuations and waiting costs. J. Revenue Pricing Manag. 12, 139–161 (2013)

    Article  Google Scholar 

  3. Miller, B.L.: A queueing reward system with several customer classes. Manag. Sci. 16, 235–245 (1969)

    Article  Google Scholar 

  4. Stidham, S.: Optimal control of admission to a queueing system. IEEE Trans. Autom. Control 30, 705–713 (1985)

    Article  Google Scholar 

  5. Helm, W.E., Waldman, K.-H.: Optimal control of arrivals to multiserver queues in a random environment. J. Appl. Probab. 21, 602–615 (1984)

    Article  Google Scholar 

  6. Feinberg, E.A., Reiman, M.I.: Optimality of randomized trunk reservation. Probab. Eng. Inf. Sci. 8, 483–489 (1994)

    Article  Google Scholar 

  7. Haviv, M., Puterman, M.L.: Bias optimality in controlled queueing systems. J. Appl. Probab. 35, 136–150 (1998)

    Article  Google Scholar 

  8. Lewis, M.E., Ayhan, H., Foley, R.D.: Bias optimality in a queue with admission control. Probab. Eng. Inf. Sci. 13, 309–327 (1999)

    Article  Google Scholar 

  9. Fan-Orzechowski, X., Feinberg, E.A.: Optimality of randomized trunk reservation for a problem with a single constraint. Adv. Appl. Probab. 38, 199–220 (2006)

    Article  Google Scholar 

  10. Fan-Orzechowski, X., Feinberg, E.A.: Optimality of randomized trunk reservation for a problem with multiple constraints. Probab. Eng. Inf. Sci. 21, 189–200 (2007)

    Article  Google Scholar 

  11. Ormeci, E.L., van der Wall, J.: Admission policies for a two class loss system with general interarrival times. Stoch. Models 22, 37–53 (2006)

    Article  Google Scholar 

  12. Low, D.W.: Optimal dynamic pricing policies for an M/M/s queue. Oper. Res. 22, 545–561 (1974)

    Article  Google Scholar 

  13. Low, D.W.: Optimal pricing for an unbounded queue. IBM J. Res. Dev. 18, 290–302 (1974)

    Article  Google Scholar 

  14. Maoui, I., Ayhan, H., Foley, R.D.: Congestion-dependent pricing in a stochastic service system. Adv. Appl. Probab. 39, 898–921 (2007)

    Article  Google Scholar 

  15. Gans, N., Savin, S.: Pricing and capacity rationing for rentals with uncertain durations. Manag. Sci. 53, 390–407 (2007)

    Article  Google Scholar 

  16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    Book  Google Scholar 

  17. Dynkin, E.B., Yushkevich, A.A.: Controlled Markov Processes. Springer, New York (1979)

    Book  Google Scholar 

  18. Kallenberg, L.C.M.: Finite state and action MDPs. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Processes: Methods and Applications, pp. 21–87. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  19. Schweitzer, P.J., Federgruen, A.: The asymptotic behavior of undiscounted value iteration in Markov decision problems. Math. Oper. Res. 2, 360–381 (1977)

    Article  Google Scholar 

  20. White, D.J.: Dynamic programming, Markov chains, and the method of successive approximations. J. Math. Anal. Appl. 6, 373–376 (1963)

    Article  Google Scholar 

  21. Denardo, E.V.: Markov renewal programs with small interest rates. Ann. Math. Stat. 42, 477–496 (1971)

    Article  Google Scholar 

  22. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002)

    Google Scholar 

  23. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)

    Google Scholar 

Download references

Acknowledgments

The research was partially supported by NSF Grant CMMI-1335296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Feinberg.

Appendix

Appendix

Proof of Lemma 4.6

(a) We prove statement (a) by contradiction. Assume that there exists some state \(s\in R^f\) such that \(U^f(s,\nabla w_s^f)< \max _{a\in A(s)}\{\alpha ^a[r_a-\nabla w^f_s]\}\). Consider a policy \(g\in F\) such that \(g_n=f_n\) for \(n\ne s\) and \(g_s\) is the action such that \(\alpha ^{g_s}[r_{g_s}-\nabla w^f_s]=\max _{a\in A(s)}\{\alpha ^a[r_a-\nabla w^f_s]\}\). Let \(e_n=\alpha ^{g_n}[r_{g_n}-\nabla w^f_n]-U^f(n,\nabla w^f_n)\) for \(n=0,1,\ldots ,N\). Then \(e_n\) is the same as \(\gamma _n\) in formula (8.39) in [23] and, according to (8.39) in [23],

$$\begin{aligned} v^g-v^f=\sum _{n=0}^N\pi ^g_n e_n. \end{aligned}$$
(14)

Observe that \(e_n=0\) for \(n\ne s\) and \(e_s=\alpha ^{g_n}[r_{g_n}-\nabla w^f_n]-U^f(s,\nabla w^f_s)>0\). According to (14), \(v^g-v^f = \sum _{n=0}^N\pi ^g_n e_n = \pi ^g_s e_s\). Since \(s\in R^g\) and \(e_s>0\), \(\pi ^g_s>0\) and, thus, \(v^g-v^f=\pi ^g_s e_s>0\). We have a contradiction. Thus, if \(f\in F^*\), then \(U^f(n,\nabla w^f_n)=\max _{a\in A(n)}\{\alpha ^a[r_a-\nabla w^f_n]\}\) for \(n\in R^f\).

(b) Let \(f\in F^*\) and \(\max _{a=1,2,\ldots ,m}\{\alpha ^a\times r_a\}=M\). Then \(\pi ^f_n>0\) for \(n=0,1,\ldots ,n^f\) and \(v^f=v^*=\sum _{n=0}^{n^f}\pi _n^f R(n, f_n)\). Since \(H_{n}\ge 0\) for \(n=0,1,\ldots ,N\), \(R(n, f_n)=\alpha ^{f_n} [r_{f_n}-H_{n+1}]-(1-\alpha ^{f_n})H_{n}\le M\) for \(n=0,1,\ldots ,n^f-1\) and \(R(n^f,f_{n^f})=0\). Then \(v^f=\sum _{n=0}^{n^f}\pi ^f_n R(n,f_n)=\sum _{n=0}^{n^f-1}\pi ^f_n R(n,f_n)\le \sum _{n=0}^{n^f-1} \pi ^f_n M< \sum _{n=0}^{n^f}\pi ^f_n M= M\). To show \(0<v^*\), consider a policy \(g\in F\) such that \(g_0= m\) and \(g_n= 0\) for \(n=1,2,\ldots ,N\). Then \(\pi ^g_0>0\), \(\alpha ^m=1\), \(H_{0}=H_{1}=0\), and \(R(0,g_0)=\alpha ^{m}[r_m -H_{1}]-(1-\alpha ^m)H_{0}=r_m >0\). Thus, \(v^*\ge v^g=\pi ^g_0 R(0,g_0)>0\).

(c) Since \(f\in F^*\), (6) and Statements (a) and (b) of this lemma imply \(v^f=\alpha ^{f_0}[r_{f_0}-\nabla w_0^f]=\max _{a\in A(0)}\{\alpha ^a [r_a-\nabla w_0^f]\}<\max _{a=1,2,\ldots ,m}\{\alpha ^a\times r_a\}\). In addition, if \(f_0= 0\), then \(v^f=\pi ^f_0 R(0,f_0)=0\), which contradicts statement (b) of this lemma. Thus, \(f_0\ne 0\). Since \(v^f=\alpha ^{f_0}[r_{f_0}-\nabla w_0^f]=\max _{a\in A(0)}\{\alpha ^a [r_a-\nabla w_0^f]\}<\max _{a=1,2,\ldots ,m}\{\alpha ^a\times r_a\}\) and \(f_0\ne 0\), the only possibility is \(\nabla w_0^f>0\). Since \(\nabla w^f_0>0\), \(H_{0}=H_{1}=0\), and \(p(1|1)>0\), (4) implies \(\nabla y_0^f>0\).

(d) Since \(f\in F^*\), \(f^R\in F^*\). Consider a policy \(g\in C^*\). Since \(g\in C^*\), Lemma 4.1 implies \(\nabla y^g_n=u_n\) and \(\nabla w^g_n=z_n\) for \(n=0,1,\ldots ,N-1\). From statement (c) of this lemma, \(n^f>0\) and \(n^g>0\). Consider two cases: (i) \(0<n^g\le n^f\) and (ii) \(0<n^f<n^g\).

(i) Let \(0<n^g\le n^f\). Since \(g\in C^*\), Proposition 4.1 implies \(U^g(n,z_n)=\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}\) for \(n=0,1,\ldots ,N\). Let \(e_n=\alpha ^{f^R_n}[r_{f^R_n}-z_n]-U^g(n,z_n)\) for \(n=0,1,\ldots ,N\). Then, \(e_n= \alpha ^{f^R_n}[r_{f^R_n}-z_n]-\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}\le 0\) for \(n=0,1,\ldots ,N\). Assume that there exists a state s, \(0\le s\le n^f-1\), such that \(e_s<0\). Observe that \(\pi ^{f^R}_s>0\). According to (14), \(v^{f^R}-v^g=\sum _{n=0}^N\pi ^{f^R}_n e_n=\pi ^{f^R}_s e_s<0\) and \(f^R\) is not optimal. We have a contradiction. Thus, \(e_n=0\) for \(n=0,1,\ldots ,n^f-1\). Moreover, observe that \(n^f\ge n^g\), \(f^R_n=g_n= 0\) and, thus, \(e_n=0\) for \(n=n^f,n^f+1,\ldots ,N\). Since \(e_n=\alpha ^{f^R_n}[r_{f^R_n}-z_n]-U^g(n,z_n)=0\) for all \(n=0,1,\ldots ,N\), by substituting g with \(f^R\) in (6), \(\nabla y^{f^R}_n=u_n\) and \(\nabla w^{f^R}_n=z_n\) for \(n=0,1,\ldots ,N-1\). Since \(\nabla w^{f^R}_n=z_n\) and \(\alpha ^{f^R_n}[r_{f^R_n}-z_n]=U^g(n,z_n)\) for \(n=0,1,\ldots ,N-1\), \(U^{f^R}(n,\nabla w^{f^R}_n) = \alpha ^{f^R_n}[r_{f^R_n}-z_n]= U^g(n,z_n)=\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}\) for \(n=0,1,\ldots ,N-1\). According to Proposition 4.1, \(f^R\in C^*\).

(ii) Consider \(0<n^f < n^g\). First, we show that \(U^{f^R}(n,\nabla w_n^{f^R})=U^g(n,z_n)\) for \(n=0,1,\ldots ,n^f-1\). Since \(f^R\in F^*\) and \(g\in C^{*}\), from (6), (7), and statement (a) of this lemma, \(v^{f^R}=U^{f^R}(0,\nabla w_0^{f^R})=\max _{a\in A(0)}\{\alpha ^a[r_a-\nabla w^{f^R}_0]\}= v^g =U^g(0,z_0)=\max _{a\in A(0)}\{\alpha ^a[r_a-z_0]\}\). Assume \(\nabla w^{f^R}_0< z_0\). Since \(f^R_0\ne 0\) and \(g_0\ne 0\), \(\max _{a\in A(0)}\{\alpha ^a[r_a-z_0]\}=U^g(0,z_0)=\alpha ^{g_0}[r_{g_0}-z_0]<\alpha ^{g_0}[r_{g_0}-\nabla w^{f^R}_0]\le \max _{a\in A(0)}\{\alpha ^a[r_a-\nabla w^{f^R}_0]\}\). Similarly, \(v^g>v^{f^R}\) if \(\nabla w^{f^R}_0>z_0\). In either case we have a contradiction. Thus, \(\nabla w^{f^R}_0=z_0\) and (4) implies \(\nabla y^{f^R}_0=u_0\). Since \(f^R\in F^*\) and \(g\in C^*\), from (6), (7), and statement (a) of this lemma, \(v^{f^R}=U^{f^R}(1,\nabla w^{f^R}_1)-H_{1}+p(0|1)\nabla y^{f^R}_0= \max _{a\in A(1)}\{\alpha ^a[r_a-\nabla w^{f^R}_1]\}-H_{1}+p(0|1)\nabla y^{f^R}_0 = v^g= U^g(1,z_1)-H_{1}+p(0|1)u_0= \max _{a\in A(1)}\{\alpha ^a[r_a-z_1]\}-H_{1}+p(0|1)u_0\). Since \(\nabla y^{f^R}_0=u_0\), \(U^{f^R}(1,\nabla w_1^{f^R})=\max _{a\in A(1)}\{\alpha ^a[r_a-\nabla w^{f^R}_1]\} = U^g(1,z_1)=\max _{a\in A(1)}\{\alpha ^a[r_a-z_1]\}\). Because \(f^R_1\ne 0\) and \(g_1\ne 0\), we can use the same arguments for proving \(\nabla w^{f^R}_0 = z_0\) to show that \(\nabla w^{f^R}_1=z_1\). Since \(\nabla y^{f^R}_0=u_0\) and \(\nabla w_1^f=z_1\), (4) implies \(\nabla y^{f^R}_1=u_1\). By repeating the same argument \(n^f-2\) times, \(\nabla y^{f^R}_n = u_n\) and \(\nabla w^{f^R}_n=z_n\) for \(n=0,1,\ldots ,n^f-1\). Then statement (a) of this lemma and Proposition 4.1 imply \(U^{f^R}(n,\nabla w_n^{f^R})=\max _{a\in A(n)}\{\alpha ^a[r_a-\nabla w_n^{f^R}]\}=\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}=U^g(n,z_n)\) for \(n=0,1,\ldots ,n^f-1\).

Now we show that \(U^g(n,z_n)=U^{f^R}(n,\nabla w_n^{f^R})\) for \(n=n^f,n^f+1,\ldots ,N-1\). From the proven part of (ii), \(\nabla y^{f^R}_n \nabla y^g_n= u_n\) for \(n=0,1,\ldots ,n^f-1\). Then, according to (6) and (7), \(v^{f^R} = -H_{n^f} + \sum _{j=0}^{n^f-1}p(j|n^f) [\sum _{i=j}^{n^f-1} u_i] = v^g = \alpha ^{g_{n^f}}[r_{g_{n^f}}-z_{n^f}]- H_{n^f} + \sum _{j=0}^{n^f-1}p(j|n^f) [\sum _{i=j}^{n^f-1}u_i]=\max _{a\in A(n^f)}\{\alpha ^a [r_a- z_{n^f}]\} - H_{n^f} + \sum _{j=0}^{n^f-1}p(j|n^f) [\sum _{i=j}^{n^f-1}u_i]\). Thus, \(\alpha ^{g_{n^f}}[r_{g_{n^f}}-z_{n^f}]= \max _{a\in A(n^f)}\{\alpha ^a[r_a-z_{n^f}]\}=0\). Note that \(n^f<n^g\) and \(g_{n^f}\ne 0\). Because \(\alpha ^{g_{n^f}}[r_{g_{n^f}}-z_{n^f}]=\max _{a\in A(n^f)}\{\alpha ^a[r_a-z_{n^f}]\}=0\) and \(g_{n^f}\ne 0\), the only solution is \(g_{n^f}=1\) and \(r_{g_{n^f}}=z_{n^f}= r_1\). In addition, since \(z_{n^f}= r_1\), (10) implies \(z_n\ge r_1\) for \(n=n^f+1,n^f+2,\ldots ,N-1\) and Proposition 4.1 implies \(U^g(n,z_n)=\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}=0\) for \(n=n^f+1, n^f+2,\ldots ,N\). Since \(f^R_n=0\) for \(n=n^f,n^f+1,\ldots ,N\), \(U^g(n,z_n)=U^{f^R}(n,\nabla w_n^{f^R})=0\) for \(n=n^f,n^f+1,\ldots ,N\).

Thus, \(U^{f^R}(n,\nabla w_n^{f^R})=U^g(n,z_n)\) for \(n=0,1,\ldots ,N\). Observe that \(v^{f^R}=v^g=v^*\). By solving (6) for both policies \(f^R\) and g, \(\nabla y_n^{f^R}=u_n\) for \(n=0,1,\ldots ,N-1\). According to (4), \(\nabla w_n^{f^R}=z_n\) for \(n=0,1,\ldots ,N-1\). Then \(U^{f^R}(n,\nabla w_n^{f^R})=U^{f^R}(n, z_n)=U^g(n,z_n)=\max _{a\in A(n)}\{\alpha ^a[r_a-z_n]\}\) for \(n=0,1,\ldots ,N\). Proposition 4.1 implies \(f^R\in C^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinberg, E.A., Yang, F. Optimal pricing for a GI/M/k/N queue with several customer types and holding costs. Queueing Syst 82, 103–120 (2016). https://doi.org/10.1007/s11134-015-9457-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-015-9457-7

Keywords

Mathematics Subject Classification

Navigation