Skip to main content
Log in

Loss systems in a random environment: steady state analysis

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove a product-form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, for example, from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, for example, of queueing-inventory processes. We investigate further classical loss systems, where, due to finite waiting room, loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balsamo, S., Marin, A.: Separable solutions for Markov processes in random environments. Eur. J. Oper. Res. 229(2), 391–403 (2013)

    Article  Google Scholar 

  2. Balsamo, S., De Nitto Persone, V., Onvural, R.: Analysis of Queueing Networks with Blocking. Kluwer, Norwell (2001)

  3. Baskett, F., Chandy, M., Muntz, R., Palacios, F.: Open, closed and mixed networks of queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248–260 (1975)

    Article  Google Scholar 

  4. Berman, O., Kim, E.: Stochastic models for inventory management at service facilities. Comm. Statist. Stoch. Models 15(4), 695–718 (1999)

    Article  Google Scholar 

  5. Boucherie, R.J.: A characterization of independence for competing Markov chains with applications to stochastic petri nets. IEEE Trans. Softw. Eng. 20(7), 536–544 (1994)

    Article  Google Scholar 

  6. Daduna, H.: Stochastic networks with product form equilibrium. In: D. Shanbhag, C. Rao (eds.) Stochastic Processes: Theory and Methods, Handbook of Statistics, vol. 19, Chap. 11, pp. 309–364. Elsevier Science, Amsterdam (2001)

  7. Dallery, Y., Gershwin, S.B.: Manufacturing flow line systems: a review of models and analytical results. Queueing Syst. 12, 3–94 (1992)

    Article  Google Scholar 

  8. Economou, A.: Generalized product-form stationary distributions for Markov chains in random environments with queueing applications. Adv. Appl. Probab. 37(1), 185–211 (2005)

    Article  Google Scholar 

  9. Economou, A., Fakinos, D.: Product form stationary distributions for queueing networks with blocking and rerouting. Queueing Syst. 30, 251–260 (1998)

    Article  Google Scholar 

  10. Falin, G.: A heterogeneous blocking system in a random environment. J. Appl. Probab. 33, 211–216 (1996)

    Article  Google Scholar 

  11. Gordon, W., Newell, G.: Closed queueing networks with exponential servers. Oper. Res. 15, 254–265 (1967)

    Article  Google Scholar 

  12. Haccou, P., Jagers, P., Vatutin, V.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  13. Helm, W., Waldmann, K.H.: Optimal control of arrivals to multiserver queues in a random environment. J. Appl. Probab. 21, 602–615 (1984)

    Article  Google Scholar 

  14. Jackson, J.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957)

    Article  Google Scholar 

  15. Keilson, J.: Markov Chain Models—Rarity and Exponentiality. Springer, New York (1979)

    Book  Google Scholar 

  16. Kelly, F.: Networks of queues. Adv. Appl. Probab. 8, 416–432 (1976)

    Article  Google Scholar 

  17. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester (1979)

    Google Scholar 

  18. Kesten, H.: Random processes in random environments. In: W. Jäger, H. Rost, P. Tautu (eds.) Biological Growth and Spread. Lecture Notes in Biomathematics, vol. 38, Chap. Ib, pp. 82–92. Springer, Berlin (1980). Proceedings of the Conference on Models of Biological Growth and Spread. University of Heidelberg, Heidelberg (1979)

  19. Krenzler, R., Daduna, H.: Loss systems in a random environment—steady state analysis. Preprint No. 2012-04. Mathematical Statistics and Stochastic Processes. University of Hamburg, Hamburg (2012)

  20. Krishnamoorthy, A., Viswanath, N.C.: Stochastic decomposition in production inventory with service time. Eur. J. Oper. Res. 228, 358–366 (2013)

    Article  Google Scholar 

  21. Krishnamoorthy, A., Lakshmy, B., Manikandan, R.: A survey on inventory models with positive service time. OPSEARCH 48(2), 153–169 (2011)

    Article  Google Scholar 

  22. Krishnamoorthy, A., Manikandan, R., Lakshmy, B.: A revisit to queueing-inventory system with positive service time. Ann. Oper. Res. (2013). doi:10.1007/s10479-013-1437-x

  23. Neuts, M.: Matrix Geometric Solutions in Stochastic Models—An Algorithmic Approach. Johns Hopkins University Press, Baltimore (1981)

  24. Neuts, M.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York (1989)

    Google Scholar 

  25. Onvural, R.O.: Closed queueing networks with blocking. In: Takagi, H. (ed.) Stochastic Analysis of Computer and Communication Systems, pp. 499–528. North-Holland, Amsterdam (1990)

    Google Scholar 

  26. Perros, H.G.: Approximation algorithms for open queueing networks with blocking. In: Takagi, H. (ed.) Stochastic Analysis of Computer and Communication Systems, pp. 451–498. North-Holland, Amsterdam (1990)

    Google Scholar 

  27. Saffari, M., Haji, R., Hassanzadeh, F.: A queueing system with inventory and mixed exponentially distributed lead times. Int. J. Adv. Manuf. Technol. 53, 1231–1237 (2011)

    Article  Google Scholar 

  28. Saffari, M., Asmussen, S., Haji, R.: The M/M/1 queue with inventory, lost sale and general lead times. Queueing Syst. 75, 65–77 (2013)

    Article  Google Scholar 

  29. Sauer, C.: Stochastic product form networks with unreliable nodes: analysis of performance and availability. PhD thesis, University of Hamburg, Department of Mathematics (2006)

  30. Sauer, C., Daduna, H.: Availability formulas and performance measures for separable degradable networks. Econ. Qual. Control 18, 165–194 (2003)

    Article  Google Scholar 

  31. Schassberger, R.: Warteschlangen. Springer, Wien (1973)

    Book  Google Scholar 

  32. Schwarz, M., Sauer, C., Daduna, H., Kulik, R., Szekli, R.: M/M/1 queueing systems with inventory. Queueing Syst. 54, 55–78 (2006)

    Article  Google Scholar 

  33. Tersine, R.: Principles of Inventory and Materials Management, 4th edn. PTR Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  34. Tsitsiashvili, G., Osipova, M., Koliev, N., Baum, D.: A product theorem for Markov chains with application to PF-queueing networks. Ann. Oper. Res. 113, 141–154 (2002)

    Article  Google Scholar 

  35. Van Dijk, N.M.: Queueing Networks and Product Forms–A Systems Approach. Wiley, Chichester (1993)

    Google Scholar 

  36. Van Dijk, N.M.: On practical product form characterizations. In: R. Boucherie, N. van Dijk (eds.) Queueing Networks: A Fundamental Approach, International Series in Operations Research and Management Science, vol. 154, Chap. 1, pp. 1–83. Springer, New York (2011)

  37. Vineetha, K.: Analysis of inventory systems with positive and/negligible service time. PhD thesis, Department of Statistics, University of Calicut, India (2008)

  38. Zhu, Y.: Markovian queueing networks in a random environment. Oper. Res. Lett. 15, 11–17 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the associate editor and an anonymous referee for careful reading of the manuscript and their constructive critics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Krenzler.

Appendix: Proofs

Appendix: Proofs

Proof of Proposition 1

The inventory management process under \((r,S)\)-policy with distribution function \(B\) of the lead times fits into the definition of the environment process by setting

$$\begin{aligned} K=\{r\!+\!1,r\!+\!2,\ldots ,S\}\cup \left( \{0,1,\ldots ,r\}\times \{L,\dots ,1\}\right) ,\quad K_\mathrm{B}=\{0\}\!\times \!\{L,\dots ,1\}\,. \end{aligned}$$

The non-negative transition rates of \((X,Y)\) are, for \((n,k)\in E\),

$$\begin{aligned} \begin{array}{ll} q((n,k),(n+1,k)) = \lambda , &{} \quad k\in K_\mathrm{W},~n\ge 0,\\ q((n,k),(n-1,m)) = \mu (n)R(k,m), &{} \quad k\in K_{W},~m\in K,~n>0,\\ q((n,k),(n,m)) = v(k,m)\in \mathbb {R}_{0}^{+}, &{} \quad k\ne m,~~k,m\in K,\\ q((n,k),(i,m)) = 0, &{} \quad \text {otherwise for }(n,k)\ne (i,m)\in E, \end{array} \end{aligned}$$
$$\begin{aligned} {\begin{array}{lll}\text {where} &{} \quad R(k,k-1)= 1 &{}\quad \text {if} ~ k\in \{r+2,\ldots ,S\},\\ &{} \quad R(r+1,(r,\ell ))=b{(\ell )} &{}\quad \text {if} ~ \ell \in \{L,\dots ,1\},\\ &{} \quad R((j,\ell ),(j-1,\ell ))=1 &{}\quad \text {if} ~ (j,\ell )\in \{1,\ldots , r\}\times \{L,\ldots ,1\},\\ &{} \quad R((0,\ell ),(0,\ell ))=1 &{}\quad \text {if} ~ \ell \in \{L,\ldots ,1\}, \quad \text {and} \quad R(k,j)=0 \\ &{} &{}\qquad \text {if}~ k,j\in K,~\text {otherwise}, \end{array}} \end{aligned}$$
$$\begin{aligned} \text {and} \qquad v((j,\ell ),(j,\ell -1))&=\beta \qquad \text {if } j\in \{0,1,\ldots ,r\},\ell \in \{L,\dots ,2\},\\ \qquad v((j,1),S)&=\beta \qquad \text {if } j\in \{0,1,\ldots , r\},\quad \text {and} \quad v{(k,j)}=0\\&\quad \qquad \qquad ~ \text {if } ~ k,j\in K,~\text {otherwise}. \end{aligned}$$

Theorem 1 yields the product form steady state distribution

$$\begin{aligned} \pi (n,k)=C^{-1}\frac{\lambda ^{n}}{\prod _{i=0}^{n-1}\mu (i+1)}\theta (k),\quad (n,k)\in E\,. \end{aligned}$$
(34)

We have to solve (5). By definition this is, with \(R(k,k)=0,\,\forall k\in K\backslash \{0\},\,R(0,0)=1\),

$$\begin{aligned} \theta (k)\left( 1_{[k\in K_\mathrm{W}]}\lambda +\sum _{m\in K\backslash \{k\}}v(k,m)\right)&= \sum _{m\in K_\mathrm{W}\backslash \{k\}}\theta (m)\left( \lambda R(m,k)+v(m,k)\right) \nonumber \\&+\sum _{m\in K_\mathrm{B}\backslash \{k\}}\theta (m)v(m,k). \end{aligned}$$
(35)

(I) For \(r>0\), (35) translates into

$$\begin{aligned} \theta (S){\cdot }\lambda&= \sum _{j=0}^{r}\theta (j,1){\cdot }\beta ,\end{aligned}$$
(36)
$$\begin{aligned} \theta (k){\cdot }\lambda&= \theta (k+1){\cdot }\lambda , \,\,\,\quad \qquad \qquad \qquad \qquad \qquad k=r+1,\dots ,S-1,\end{aligned}$$
(37)
$$\begin{aligned} \theta (r,\ell ){\cdot }(\lambda +\beta )&= \theta (r+1){\cdot }\lambda b(\ell )+\theta (r,\ell +1){\cdot }\beta , \,\quad 1\le \ell <L,\end{aligned}$$
(38)
$$\begin{aligned} \theta (r,L){\cdot }(\lambda +\beta )&= \theta (r+1){\cdot }\lambda b(L),\end{aligned}$$
(39)
$$\begin{aligned} \theta (j,L){\cdot }(\lambda +\beta )&= \theta (j+1,L){\cdot }\lambda , \,\,\,\,\,\qquad \qquad \qquad \qquad \quad 1\le j<r,\end{aligned}$$
(40)
$$\begin{aligned} \theta (j,\ell ){\cdot }(\lambda +\beta )&= \theta (j+1,\ell ){\cdot }\lambda +\theta (j,\ell +1){\cdot }\beta , \qquad 1\le j<r,1\le \ell <L,\end{aligned}$$
(41)
$$\begin{aligned} \theta (0,\ell ){\cdot }\beta&= \theta (1,\ell ){\cdot }\lambda +\theta (0,\ell +1){\cdot }\beta , \,\quad \qquad \quad 1\le \ell <L,\end{aligned}$$
(42)
$$\begin{aligned} \theta (0,L){\cdot }\beta&= \theta (1,L){\cdot }\lambda . \end{aligned}$$
(43)

From (37) it follows that

$$\begin{aligned} \theta (S)=\theta (S-1)=\cdots =\theta (r+1), \end{aligned}$$
(44)

and from (39) and (40) it follows that for \(1\le j \le r\)

$$\begin{aligned} \theta (j,L)=\theta (r+1)b(L)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r+1-j}. \end{aligned}$$
(45)

From (45) (for \(j=r\)) and it (38) follows directly that

$$\begin{aligned} \theta (r,\ell )=\theta (r+1)\frac{\lambda }{\lambda +\beta }\sum _{i=\ell }^{L}b(i)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell },\quad 1\le \ell <L\,. \end{aligned}$$
(46)

Up to now we have obtained the expressions for the north and west border line of the array \((\theta (j,\ell ):1\le j\le r,1\le \ell \le L)\) which can be filled step by step via (41). The proposed solution is

$$\begin{aligned} \theta (r-h,\ell )=\theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{h+1}\sum _{i=\ell }^{L}b(i)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +h\\ h\end{array}}\right) , \end{aligned}$$
(47)

for \(h=0,1,\dots ,r-1,\ell =1,\dots ,L\) which fits with (46) (\(h=0\) with \(\left( {\begin{array}{c}i-l\\ 0\end{array}}\right) =1\)) and (45). Inserting (47) into (41) verifies (47) by a two-step induction with help from the elementary formula \(\left( {\begin{array}{c}a\\ n\end{array}}\right) +\left( {\begin{array}{c}a\\ n-1\end{array}}\right) =\left( {\begin{array}{c}a+1\\ n\end{array}}\right) \). For computing the residual boundary probabilities \(\theta (0,\ell )\), we need some more effort. The proposed solution is, for \(\ell =1,\ldots ,L,\)

$$\begin{aligned} \theta (0,\ell )=\theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }\left[ \sum _{i=\ell }^{L}\sum _{g=i}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ r-1\end{array}}\right) \right] .\nonumber \\ \end{aligned}$$
(48)

From (43) and (45) we obtain

$$\begin{aligned} \theta (0,L)=\theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }b(L), \end{aligned}$$
(49)

which fits into (48), and it remains to check the recursion (42). This amounts to computing

$$\begin{aligned}&\theta (1,\ell ){\cdot }\frac{\lambda }{\beta }+\theta (0,\ell +1)\\&\quad = \theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\sum _{i=\ell }^{L}b(i)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ r-1\end{array}}\right) {\cdot }\frac{\lambda }{\beta }\\&\qquad +\,\theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }\left[ \sum _{i=\ell +1}^{L}\sum _{g=i}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-(\ell +1)}\left( {\begin{array}{c}i-(\ell +1)+r-1\\ r-1\end{array}}\right) \right] \\&\quad = \theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }\left[ \sum _{i=\ell +1}^{L}\left\{ \sum _{g=i}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-(\ell +1)}\left( {\begin{array}{c}\overbrace{i-(\ell +1)}^{=(i-1)-\ell }+r-1\\ r-1\end{array}}\right) \right. \right. \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. +\,b(i-1)\left( \frac{\beta }{\lambda +\beta }\right) ^{(i-1)-\ell }\left( {\begin{array}{c}(i-1)-\ell +r-1\\ r-1\end{array}}\right) \right\} \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. +\,b(L)\left( \frac{\beta }{\lambda +\beta }\right) ^{L-\ell }\left( {\begin{array}{c}L-\ell +r-1\\ r-1\end{array}}\right) \right] \\&\quad = \theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }\left[ \sum _{i=\ell +1}^{L}\left\{ \sum _{g=i-1}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{(i-1)-\ell }\left( {\begin{array}{c}(i-1)-\ell +r-1\\ r-1\end{array}}\right) \right\} \right. \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. +\,b(L)\left( \frac{\beta }{\lambda +\beta }\right) ^{L-\ell }\left( {\begin{array}{c}L-\ell +r-1\\ r-1\end{array}}\right) \right] \\&\quad = \theta (r+1)\left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\frac{\lambda }{\beta }\left[ \sum _{i=\ell }^{L-1}\left\{ \sum _{g=i}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ r-1\end{array}}\right) \right\} \right. \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. +\,b(L)\left( \frac{\beta }{\lambda +\beta }\right) ^{L-\ell }\left( {\begin{array}{c}L-\ell +r-1\\ r-1\end{array}}\right) \right] = \theta (0,\ell ).\\&\text {Setting}\ \theta (r+1)=G^{-1}\left( \frac{\lambda +\nu }{\lambda }\right) ^{r} \text { completes the proof in the case}~r=0. \end{aligned}$$

(II) For \(r>0\), (35) translates into

$$\begin{aligned} \theta (S){\cdot }\lambda&= \theta (0,1){\cdot }\beta ,\end{aligned}$$
(50)
$$\begin{aligned} \theta (k){\cdot }\lambda&= \theta (k+1){\cdot }\lambda ,\,\quad \qquad \qquad \qquad \qquad \quad k=1,\dots ,S-1,\end{aligned}$$
(51)
$$\begin{aligned} \theta (0,\ell ){\cdot }\beta&= \theta (1){\cdot }\lambda {\cdot } b(L)+\theta (0,\ell +1){\cdot }\beta ,\quad 1\le \ell <L,\end{aligned}$$
(52)
$$\begin{aligned} \theta (0,L){\cdot }\beta&= \theta (1){\cdot }\lambda {\cdot } b(L). \end{aligned}$$
(53)

From (51) it follows that

$$\begin{aligned} \theta (S)=\theta (S-1)=\dots =\theta (1), \end{aligned}$$
(54)

and we will show that

$$\begin{aligned} \theta (0,\ell )=\theta (1){\cdot }\left( \frac{\lambda }{\beta }\right) \left[ \sum _{i=\ell }^{L}b(i)\right] ,\quad \ell =1,\dots ,L, \end{aligned}$$
(55)

holds. For \(\ell =L\) this is immediate from (53), and for \(\ell <L\) it follows by induction from (52). Setting \(\theta (1)=G^{-1}\) completes the proof in the case \(r=0\). \(\square \)

Remark 4

For \(r>0\), we can write (26) as

$$\begin{aligned} \theta (0,\ell ) \!=\! G^{-1}\frac{\lambda }{\beta }\left[ \sum _{i=\ell }^{L}\left( \sum _{g=i}^{L}b(g)\right) \left( \frac{\beta }{\lambda \!+\!\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ i-\ell \end{array}}\right) \right] ,\,\, \ell \!=\!1,\dots ,L, \end{aligned}$$

and can extend this formula to the case \(r=0\). This yields, with \(\left( {\begin{array}{c}-1\\ 0\end{array}}\right) =1\), explicitly

$$\begin{aligned} \theta (0,\ell )&= G^{-1}\frac{\lambda }{\beta }\left[ \sum _{i=\ell }^{L}b(i)\right] ,\quad \ell =1,\dots ,L. \end{aligned}$$

Proof of Corollary 2

For \(j=1,\dots ,r\), we have

$$\begin{aligned} P(I=j)&= G^{-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{j-1}\sum _{\ell =1}^{L}\sum _{i=\ell }^{L}b(i)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-j\\ r-j\end{array}}\right) \\&= G^{-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{j-1}\sum _{i=1}^{L}b(i)\sum _{\ell =1}^{i}\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-j\\ r-j\end{array}}\right) \\&= G^{-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{j-1}\sum _{i=1}^{L}b(i)\sum _{g=0}^{i-1}\left( \frac{\beta }{\lambda +\beta }\right) ^{g}\left( {\begin{array}{c}g+r-j\\ r-j\end{array}}\right) \\&= G^{-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{j-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{r+1-j} \sum _{i=1}^{L}b(i)\sum _{g=0}^{i-1}\left( {\begin{array}{c}g+(r+1-j)-1\\ (r+1-j)-1\end{array}}\right) \\&\qquad \left( \frac{\lambda }{\lambda +\beta }\right) ^{r+1-j}\left( \frac{\beta }{\lambda +\beta }\right) ^{g}\\&= G^{-1}\left( \frac{\lambda +\beta }{\lambda }\right) ^{r}\sum _{i=1}^{L}b(i) {\cdot } P\left( W\left( r+1-j,\frac{\lambda }{\lambda +\beta }\right) <i\right) , \end{aligned}$$

and for \(j=0\) we have

$$\begin{aligned} P(I=0)&= G^{-1}\left( \frac{\lambda }{\beta }\right) \sum _{\ell =1}^{L}\sum _{i=\ell }^{L}\sum _{g=i}^{L}b(g)\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ r-1\end{array}}\right) \\&= G^{-1}\left( \frac{\lambda }{\beta }\right) \sum _{i=1}^{L}\sum _{\ell =1}^{i}\left( \frac{\beta }{\lambda +\beta }\right) ^{i-\ell }\left( {\begin{array}{c}i-\ell +r-1\\ r-1\end{array}}\right) \sum _{g=i}^{L}b(g)\\&= G^{-1}\underbrace{\left( \frac{\lambda }{\beta }{\cdot } E(V)\right) }_{=\lambda /\nu }\left( \frac{\lambda +\beta }{\lambda }\right) ^{r}\sum _{i=1}^{L}\underbrace{\left( \frac{1}{E(U)}\sum _{g=i}^{L}b(g)\right) }_{=:P(V_{e}=i)}\sum _{f=0}^{i-1}\left( {\begin{array}{c}f+r-1\\ r-1\end{array}}\right) \\&\qquad \left( \frac{\lambda }{\lambda +\beta }\right) ^{r}\left( \frac{\beta }{\lambda +\beta }\right) ^{f}\\&= G^{-1}\left( \frac{\lambda }{\nu }\right) \left( \frac{\lambda +\beta }{\lambda }\right) ^{r} P\left( W\left( r+1-1,\frac{\lambda }{\lambda +\beta }\right) <U_{e}\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krenzler, R., Daduna, H. Loss systems in a random environment: steady state analysis. Queueing Syst 80, 127–153 (2015). https://doi.org/10.1007/s11134-014-9426-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-014-9426-6

Keywords

Mathematics Subject Classification

Navigation