Skip to main content

Advertisement

Log in

Nutritional and Nutraceutical Properties of Selected Pulses to Promote Gluten-Free Food Products

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The market for gluten-free products is increasing with an estimated 7.6% annual growth rate from 2020 to 2027. It has been reported that most gluten-free products, such as bread, cookies, and pasta, contain great amounts of simple carbohydrates and are low in fiber and protein, affecting people’s health. Pulses such as common beans, chickpeas, lentils, and peas have been studied as an alternative for developing gluten-free products because of their high protein and fiber content. In addition, they contain bioactive compounds with nutraceutical properties, such as phenolics, saponins, dietary fiber, and resistant starch, among others. Most studies carried out with pulses in vitro and in vivo have displayed health benefits, proving that pulse-based food products are better than their counterparts, even those containing wheat, with proper sensory acceptance. This work reviews pulse’s nutritional and nutraceutical properties to promote the development and consumption of gluten-free products and improve their formulations to promote people’s health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be available upon reasonable request.

References

  1. Boeck T, Sahin AW, Zannini E, Arendt EK (2021) Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives. Compr Rev Food Sci Food Saf 20(4):3858–3880. https://doi.org/10.1111/1541-4337.12778

    Article  CAS  PubMed  Google Scholar 

  2. Derbyshire E, Delange J (2021) The nutritional value of whole pulses and pulse fractions.In Pulse Foods 2nd edn. pp 9–29. Academic Press. https://doi.org/10.1016/B978-0-12-818184-3.00002-7

  3. Khairuddin MAN, Lasekan O (2021) Gluten-free cereal products and beverages: a review of their health benefits in the last five years. Foods 10(11):2523. https://doi.org/10.3390/foods10112523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh M, Manickavasagan A, Shobana S, Mohan V (2020) Glycemic index of pulses and pulse-based products: a review. Crit Rev Food Sci Nutr, 61.9 (2021): 1567–1588. https://doi.org/10.1080/10408398.2020.1762162

  5. Silva de Lima SL, Cotin Gomes MJ, Pereira da Silva B, Galindo Alves NE, Lopes Toledo RC, Vieria Theodoro JM (2019) Whole flour and protein hydrolysate from common beans reduce the inflammation in BALB/c mice fed with high fat high cholesterol diet. Food Res Int 122:330–339. https://doi.org/10.1016/j.foodres.2019.04.013

    Article  CAS  Google Scholar 

  6. Celmeli T, Sari H, Canci H, Sari D, Adak A, Eker T, Toker C (2018) The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agron 8:166. https://doi.org/10.3390/agronomy8090166

    Article  CAS  Google Scholar 

  7. Haas JD, Luna SV, Lung’aho MG, Wenger MJ, Murray-Kolb LE, Beebe S, Egli IM (2016) Consuming iron biofortified beans increases iron status in rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592. https://doi.org/10.3945/jn.115.224741

    Article  CAS  PubMed  Google Scholar 

  8. Kalefetoğlu T, Macar O, Dürdane İNCİ (2017) Variability in some biochemical and nutritional characteristics in desi and turkish kabuli chickpea (Cicer arietinum L.) types. Celal Bayar Üniv fen bilim Derg 13:677–668. https://doi.org/10.18466/cbayarfbe.339330

    Article  CAS  Google Scholar 

  9. Sánchez-Chino XM, Jiménez Martínez C, León-Espinosa EB, Garduño-Siciliano L, Álvarez-González I, Madrigal-Bujaidar E, Dávila-Ortiz G (2019) Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. J Am Coll Nutr 38:162–170. https://doi.org/10.1080/07315724.2018.1487809

    Article  CAS  PubMed  Google Scholar 

  10. Joshi M, Timilsena Y, Adhikari B (2017) Global production, processing and utilization of lentil: a review. J Integr Agric 16:2898–2913. https://doi.org/10.1016/S2095-3119(17)61793-3

    Article  Google Scholar 

  11. Moravek D, Duncan AM, VanderSluis LB, Turkstra SJ, Rogers EJ, Wilson JM, Ramdath DD (2018) Carbohydrate replacement of rice or potato with lentils reduces the postprandial glycemic response in healthy adults in an acute, randomized, crossover trial. J Nutr 148:535–541. https://doi.org/10.1093/jn/nxy018

    Article  PubMed  Google Scholar 

  12. Stilling K (2020) Health benefits of pea protein isolate: a comparative review. SURG J 12:1. https://doi.org/10.21083/SURG.V12I1.6111

    Article  Google Scholar 

  13. Zia-Ul-Haq M, Iqbal S, Ahmad S, Imran M, Niaz A, Bhanger MI (2007) Nutritional and compositional study of desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chem 105:1357–1363. https://doi.org/10.1016/j.foodchem.2007.05.004

    Article  CAS  Google Scholar 

  14. Hall C, Hillen C, Garden Robinson J (2017) Composition, nutritional value, and health benefits of pulses. Cereal Chem 94:11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI

    Article  CAS  Google Scholar 

  15. Wood JA, Grusak MA (2007) Nutritional value of chickpea. Chickpea breeding and management. CABI, Wallingford UK, pp 101–142

    Chapter  Google Scholar 

  16. Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO (2012) Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem 134:1312–1319. https://doi.org/10.1016/j.foodchem.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava RP, Vasishtha H (2012) Saponins and lectins of indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Indian J Agric Biochem 25:44–47

    CAS  Google Scholar 

  18. Reim V, Rohn S (2015) Characterization of saponins in peas (Pisum sativum L.) by HPTLC coupled to mass spectrometry and a hemolysis assay. Food Res Int 76:3–10. https://doi.org/10.1016/j.foodres.2014.06.043

    Article  CAS  Google Scholar 

  19. Stone AK, Waelchli KN, Çabuk B, McIntosh TC, Wanasundara J, Arntfield SD, Nickerson MT (2021) The levels of bioactive compounds found in raw and cooked canadian pulses. Food Sci Technol Int 27:528–538. https://doi.org/10.1177/1082013220973804

    Article  CAS  PubMed  Google Scholar 

  20. Luthria DL, Pastor-Corrales MA (2006) Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J Food Compos Anal 19:205–211. https://doi.org/10.1016/j.jfca.2005.09.003

    Article  CAS  Google Scholar 

  21. Liu Y, Ragaee S, Marcone MF, Abdel-Aal ESM (2020) Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods 9:908. https://doi.org/10.3390/foods9070908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fares C, Menga V (2012) Effects of toasting on the carbohydrate profile and antioxidant properties of chickpea (Cicer arietinum L.) flour added to durum wheat pasta. Food Chem 131:1140–1148. https://doi.org/10.1016/j.foodchem.2011.09.080

    Article  CAS  Google Scholar 

  23. Huber K, Brigide P, Bretas EB, Canniatti-Brazaca SG (2016) Phenolic acid, flavonoids and antioxidant activity of common brown beans (Phaseolus vulgaris L.) before and after cooking. J Nutr Food Sci 6:1–7. https://doi.org/10.4172/2155-9600.1000551

    Article  CAS  Google Scholar 

  24. Loarca-Piña G, Guzmán-Maldonado HS, Acosta-Gallegos J, Álvarez-Muñoz A, García-Delgado S (2007) Chemical parameters and biological activity of phenolic compounds in Phaseolus vulgaris and Phaseolus coccineus beans. Hispanic Foods 8:89–101. https://doi.org/10.1021/bk-2007-0946.ch008

    Article  CAS  Google Scholar 

  25. Bubelova Z, Sumczynski D, Salek RN (2018) Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L). J Food Process Preserv 42:e13388. https://doi.org/10.1111/jfpp.13388

    Article  CAS  Google Scholar 

  26. Abdulrahman BO, Bal M, Bello OM (2020) Bioactive compounds of black bean (Phaseolus vulgaris L). In: Murthy HN, Paek KY (eds) Bioactive Compounds in underutilized vegetables and legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_38-1

    Chapter  Google Scholar 

  27. Heiras-Palazuelos MJ, Ochoa-Lugo MI, Gutiérrez-Dorado R, López-Valenzuela JA, Mora-Rochín S, Milán-Carrillo J, Reyes-Moreno C (2013) Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars. Int J Food Sci Nutr 64:69–76. https://doi.org/10.3109/09637486.2012.694854

    Article  CAS  PubMed  Google Scholar 

  28. Quiroz-Sodi M, Mendoza-Díaz S, Hernández-Sandoval L, Carrillo-Ángeles I (2018) Characterization of the secondary metabolites in the seeds of nine native bean varieties (Phaseolus vulgaris and P. coccineus) from Querétaro. Mexico Bot Sci 96:650–661. https://doi.org/10.17129/botsci.1930

    Article  Google Scholar 

  29. Khandelwal S, Udipi SA, Ghugre P (2010) Polyphenols and tannins in indian pulses: effect of soaking, germination and pressure cooking. Food Res Int 43:526–530. https://doi.org/10.1016/j.foodres.2009.09.036

    Article  CAS  Google Scholar 

  30. Ruggeri R, Primi R, Danieli PP, Ronchi B, Rossini F (2017) Effects of seeding date and seeding rate on yield, proximate composition and total tannins content of two Kabuli chickpea cultivars. Ital J Agron 12:1. https://doi.org/10.4081/ija.2017.890

    Article  Google Scholar 

  31. Habiba RA (2002) Changes in antinutrients, protein solubility, digestibility, and HCl-extractability of ash and phosphorus in vegetable peas as affected by cooking methods. Food Chem 77:187–192. https://doi.org/10.1016/s0308-8146(01)00335-1

    Article  CAS  Google Scholar 

  32. Campos-Vega R, Reynoso‐Camacho R, Pedraza‐Aboytes G, Acosta‐Gallegos JA, Guzman‐Maldonado SH, Paredes‐Lopez O, Loarca‐Piña G (2009) Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L). J Food Sci 74:T59–T65. https://doi.org/10.1111/j.1750-3841.2009.01292.x

    Article  CAS  PubMed  Google Scholar 

  33. Summo C, De Angelis D, Ricciardi L, Caponio F, Lotti C, Pavan S, Pasqualone A (2019) Nutritional, physico-chemical and functional characterization of a global chickpea collection. J Food Compos Anal 84:103306. https://doi.org/10.1016/j.jfca.2019.103306

    Article  CAS  Google Scholar 

  34. Singh J, Srivastava RP, Gupta S, Basu PS, Kumar J (2016) Genetic variability for vitamin B9 and total dietary fiber in lentil (Lens culinaris L.) cultivars. Int J Food Prop 19:936–943. https://doi.org/10.1080/10942912.2015.1048353

    Article  CAS  Google Scholar 

  35. Stoughton-Ens MD, Hatcher DW, Wang N, Warkentin TD (2010) Influence of genotype and environment on the dietary fiber content of field pea (Pisum sativum L.) grown in Canada. Food Res Int 43:547–552. https://doi.org/10.1016/j.foodres.2009.07.011

    Article  CAS  Google Scholar 

  36. Keskin SO, Ali TM, Ahmed J, Shaikh M, Siddiq M, Uebersax MA (2022) Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Sci 4:e117. https://doi.org/10.1002/leg3.117

    Article  CAS  Google Scholar 

  37. de Almeida Costa GE, da Silva Queiroz-Monici K, Reis SMPM, de Oliveira AC (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330. https://doi.org/10.1016/j.foodchem.2004.11.020

    Article  CAS  Google Scholar 

  38. Öztürk S, Mutlu S (2019) Physicochemical properties, modifications, and applications of resistant starches. In: Pedrosa Silva Clerici MT, Schmiele M (eds) Starches for food application. Academic Press, pp. 297–332. https://doi.org/10.1016/B978-0-12-809440-2.00008-3

  39. Vital DAL, De Mejía EG, Dia VP, Loarca-Piña G (2014) Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 157:347–355. https://doi.org/10.1016/j.foodchem.2014.02.050

    Article  CAS  Google Scholar 

  40. Frassinetti S, Gabriele M, Caltavuturo L, Longo V, Pucci L (2015) Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum Nutr 70:35–41. https://doi.org/10.1007/s11130-014-0453-6

    Article  CAS  PubMed  Google Scholar 

  41. Feregrino-Pérez AA, Berumen LC, García-Alcocer G, Guevara-Gonzalez RG, Ramos-Gomez M, Reynoso-Camacho R, Loarca-Piña G (2008) Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J Agric Food Chem 56:8737–8744. https://doi.org/10.1021/jf8007162

    Article  CAS  PubMed  Google Scholar 

  42. Aparicio-Fernández X, García-Gasca T, Yousef GG, Lila MA, González de Mejia E, Loarca-Pina G (2006) Chemopreventive activity of polyphenolics from black Jamapa bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J Agric Food Chem 54:2116–2122. https://doi.org/10.1021/jf052974m

    Article  CAS  PubMed  Google Scholar 

  43. Aregueta-Robles U, Fajardo-Ramírez OR, Villela L, Gutiérrez-Uribe JA, Hernández-Hernández J, del López-Sánchez C, Serna-Saldívar R S (2018) Cytotoxic activity of a black bean (Phaseolus vulgaris L.) extract and its flavonoid fraction in both in vitro and in vivo models of lymphoma. Rev Invest Clin 70:32–39. https://doi.org/10.24875/RIC.17002395

    Article  CAS  PubMed  Google Scholar 

  44. Li P, Shi X, Wei Y, Qin L, Sun W, Xu G, Liu T (2015) Synthesis and biological activity of isoflavone derivatives from chickpea as potent anti-diabetic agents. Molecules 20:17016–17040. https://doi.org/10.3390/molecules200917016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang Y, Zhou L, Gu Y, Zhang Y, Tang J, Li F, Chen M (2007) Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet. Br J Nutr 98:720–726. https://doi.org/10.1017/S0007114507750870

    Article  CAS  PubMed  Google Scholar 

  46. Mekky RH, Fayed MR, El-Gindi MR, Abdel-Monem AR, Contreras MDM, Segura Carretero A, Abdel-Sattar E (2016) Hepatoprotective effect and chemical assessment of a selected egyptian chickpea cultivar. Front Pharmacol 7:344. https://doi.org/10.3389/fphar.2016.00344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu B, Chang SK (2010) Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem 58:1509–1517. https://doi.org/10.1021/jf903532y

    Article  CAS  PubMed  Google Scholar 

  48. Ramdath DD, Liu Q, Donner E, Hawke A, Kalinga D, Winberg J, Wolever TM (2017) Investigating the relationship between lentil carbohydrate fractions and in vivo postprandial blood glucose response by use of the natural variation in starch fractions among 20 lentil varieties. Food Funct 8:3783–3791. https://doi.org/10.1039/c7fo00972k

    Article  CAS  PubMed  Google Scholar 

  49. Busambwa K, Sunkara R, Diby N, Offei-Okyne R, Boateng J, Verghese M (2016) Cytotoxic and apoptotic effects of sprouted and non-sprouted lentil, green and yellow split-peas. Int J Cancer 12:51–60. https://doi.org/10.3923/ijcr.2016.51.60

    Article  Google Scholar 

  50. Graf D, Monk JM, Lepp D, Wu W, McGillis L, Roberton K, Power KA (2019) Cooked red lentils dose-dependently modulate the colonic microenvironment in healthy C57Bl/6 male mice. Nutrients 11:1853. https://doi.org/10.3390/nu11081853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo F, Xiong H, Wang X, Jiang L, Yu N, Hu Z, Tsao R (2019) Phenolics of green pea (pisum sativum l.) hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model. J Agric Food Chem 67:11955–11968. https://doi.org/10.1021/acs.jafc.9b04501

    Article  CAS  PubMed  Google Scholar 

  52. Queiroz-Monici KDS, Costa GE, da Silva N, Reis SM, de Oliveira AC (2005) Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition 21:602–608. https://doi.org/10.1016/j.nut.2004.09.019

    Article  CAS  Google Scholar 

  53. Mancebo CM, Martínez MM, Merino C, de la Hera E, Gómez M (2017) Effect of oil and shortening in rice bread quality: relationship between dough rheology and quality characteristics. J Texture Stud 48:597–606. https://doi.org/10.1111/jtxs.12270

    Article  PubMed  Google Scholar 

  54. Jagelaviciute J, Cizeikiene D (2021) The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 137:110457. https://doi.org/10.1016/j.lwt.2020.110457

    Article  CAS  Google Scholar 

  55. Palavecino PM, Bustos MC, Heinzmann Alabí MB, Nicolazzi MS, Penci MC, Ribotta PD (2017) Effect of ingredients on the quality of gluten-free sorghum pasta. J Food Sci 82:2085–2093. https://doi.org/10.1111/1750-3841.13821

    Article  CAS  PubMed  Google Scholar 

  56. Rachman A, Brennan MA, Morton J, Brennan CS (2019) Effect of cassava and banana flours blend on physico-chemical and glycemic characteristics of gluten‐free pasta. J Food Process Preserv 43:e14084. https://doi.org/10.1111/jfpp.14084

    Article  CAS  Google Scholar 

  57. Rai S, Kaur A, Singh B (2014) Quality characteristics of gluten free cookies prepared from different flour combinations. J Food Sci Technol 51:785–789. https://doi.org/10.1007/s13197-011-0547-1

    Article  CAS  PubMed  Google Scholar 

  58. Glissen Brown JR, Singh P (2019) Coeliac disease. Paediatr Int Child Health 39:23–31. https://doi.org/10.1080/20469047.2018.1504431

    Article  PubMed  Google Scholar 

  59. Myhrstad MC, Slydahl M, Hellmann M, Garnweidner-Holme L, Lundin KE, Henriksen C, Telle-Hansen VH (2021) Nutritional quality and costs of gluten-free products: a case-control study of food products on the norwegian marked. Food Nutr Res 26:65. https://doi.org/10.29219/fnr.v65.6121

    Article  CAS  Google Scholar 

  60. Olojede AO, Sanni AI, Banwo K (2020) Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT 118:108769. https://doi.org/10.1016/j.lwt.2019.108769

    Article  CAS  Google Scholar 

  61. Kahraman G, Harsa S, Casiraghi MC, Lucisano M, Cappa C (2022) Impact of raw, roasted and dehulled chickpea flours on technological and nutritional characteristics of gluten-free bread. Foods 11:199. https://doi.org/10.3390/foods11020199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hooper SD, Glahn RP, Cichy KA (2019) Single varietal dry bean (Phaseolus vulgaris L.) pastas: nutritional profile and consumer acceptability. Plant Foods Hum Nutr 74:342–349. https://doi.org/10.1007/s11130-019-00732-y

    Article  CAS  PubMed  Google Scholar 

  63. Hoxha I, Macedonia N, Deliu R, Industry F (2020) The impact of flour from white bean (Phaseolus vulgaris) on rheological, qualitative and nutritional properties of the bread. Open Access Library Journal 7:1. https://doi.org/10.4236/oalib.1106059

    Article  Google Scholar 

  64. Barbana C, Boye JI (2013) In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food Funct 4:310–321. https://doi.org/10.1039/C2FO30204G

    Article  CAS  PubMed  Google Scholar 

  65. Verni M, Demarinis C, Rizzello CG, Baruzzi F (2020) Design and characterization of a novel fermented beverage from lentil grains. Foods 9:893. https://doi.org/10.3390/foods9070893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Stefano V, Pagliaro A, Del Nobile MA, Conte A, Melilli MG (2021) Lentil fortified spaghetti: technological properties and nutritional characterization. Foods 10:4. https://doi.org/10.3390/foods10010004

    Article  CAS  Google Scholar 

  67. Díaz O, Ferreiro T, Rodríguez-Otero JL, Cobos Á (2019) Characterization of chickpea (Cicer arietinum L.) flour films: effects of pH and plasticizer concentration. Int J Mol Sci 20:1246. https://doi.org/10.3390/ijms20051246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rafii M, Pencharz PB, Ball RO, Tomlinson C, Elango R, Courtney-Martin G (2020) Bioavailable methionine assessed using the indicator amino acid oxidation method is greater when cooked chickpeas and steamed rice are combined in healthy young men. J Nutr 150:1834–1844. https://doi.org/10.1093/jn/nxaa086

    Article  PubMed  Google Scholar 

  69. Zafar TA, Aldughpassi A, Al-Mussallam A, Al-Othman A (2020) Microstructure of whole wheat versus white flour and wheat-chickpea flour blends and dough: impact on the glycemic response of pan bread. Int J Food Sci 2020:1. https://doi.org/10.1155/2020/8834960

    Article  CAS  Google Scholar 

  70. Gonzalez M, Alvarez-Ramirez J, Vernon‐Carter EJ, Reyes I, Alvarez‐Poblano L (2020) Effect of the drying temperature on color, antioxidant activity and in vitro digestibility of green pea (Pisum sativum L.) flour. Starch‐Stärke 72:1900228. https://doi.org/10.1002/star.201900228

    Article  CAS  Google Scholar 

Download references

Funding

Author M. Jaqueline Palomares-Navarro acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico) for her M. Sc. scholarship (grant number: 972930) and the funding provided by “FQST2020” Fondo Química Somos Todos 2020 (grant number: 290738).

Author information

Authors and Affiliations

Authors

Contributions

Performed the literature search and data analysis: [M. Jaqueline Palomares-Navarro]; drafted and/or critically revised the work: [Vanessa Sánchez-Quezada], drafted and/or critically revised the work: [Julián J. Palomares-Navarro]; drafted and/or critically revised the work: [J. Fernando Ayala-Zavala]. Idea for the article: [Guadalupe Loarca-Piña].

Corresponding author

Correspondence to Guadalupe Loarca-Piña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval and Consent to Participants

Not applicable.

Consent for publication

All the authors have given their consent for the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomares-Navarro, M.J., Sánchez-Quezada, V., Palomares-Navarro, J.J. et al. Nutritional and Nutraceutical Properties of Selected Pulses to Promote Gluten-Free Food Products. Plant Foods Hum Nutr 78, 253–260 (2023). https://doi.org/10.1007/s11130-023-01060-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01060-y

Keywords

Navigation