Skip to main content

Advertisement

Log in

Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Alternative therapies, such as phytotherapy, are considered to improve the health status of people with chronic non-communicable diseases (CNCDs). In this regard, Moringa oleifera is currently being studied for its nutritional value and its total phenolic content. Besides phenolic compounds, the phytochemical composition is also of great interest. This composition is characterized by the presence of glucosinolates and isothiocyanates. Isothiocyanates formed by the biotransformation of Moringa glucosinolates contain an additional sugar in their chemical structure, which provides stability to these bioactive compounds over other isothiocyanates found in other crops. Both glucosinolates and isothiocyanates have been described as beneficial for the prevention and improvement of some chronic diseases. The content of glucosinolates in Moringa tissues can be enhanced by certain harvesting methods which in turn alters their final yield after extraction. This review aims to highlight certain features of glucosinolates and isothiocyanates from M. oleifera, such as their chemical structure, functionality, and main extraction and harvesting methods. Some of their health-promoting effects will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATR FT-IR:

Attenuated total reflectance Fourier-transform infrared spectroscopy

ESI-MS:

Electrospray ionization mass spectrometry

GL:

Glucosinolates

GSH:

Glutathione

HPLC:

High-performance liquid chromatography

IL-1β:

Interleukin 1 beta

IL-16:

Interleukin 16

iNOS:

Nitric oxide synthase

ITC:

Isothiocyanates

Keap1:

Kelch-like ECH associated protein 1

LC/MS:

Liquid chromatography-mass spectrometry

MO:

Moringa oleifera

CNCDs:

Non-communicable diseases

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NO:

Nitric oxide

NQO1:

NAD(P)H quinone dehydrogenase 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

PLS:

Partial least-squares algorithm

ROS:

Reactive oxygen species

RP-UHPLC-MS:

Reversed-phase ultra-high-performance liquid chromatography−electron spray ionization−tandem mass spectrometry

TNF-α:

Tumor necrosis factor alfa

UPLC:

Ultra performance liquid chromatography

References

  1. Kim Y, Jaja-Chimedza A, Merrill D, Mendes O, Raskin I (2018) A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats. Toxicol Rep 5:418–426. https://doi.org/10.1016/j.toxrep.2018.02.012

  2. Kou X, Li B, Olayanju JB, Drake JM, Chen N (2018) Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 10(3):343. https://doi.org/10.3390/nu10030343

  3. Valdez-Solana MA, Mejía-García VY, Téllez-Valencia A, García-Arenas G, Salas-Pacheco J, Alba-Romero JJ (2015) Sierra-Campos E (2015) Nutritional content and elemental and phytochemical analyses of Moringa oleífera grown in Mexico. J Chem 2015:1–9. https://doi.org/10.1155/2015/860381

  4. Castillo-López RI, León-Félix J, Angulo-Escalante MA, Gutiérrez-Dorado R, Muy-Rangel MD, Heredia JB (2017) Nutritional and phenolic characterization of Moringa oleifera leaves grown in Sinaloa, México. Pak J Bot 49(1):161–168

  5. Saucedo-Pompa S, Torres-Castillo JA, Castro-López C, Rojas R, Sánchez-Alejo EJ, Ngangyo-Heya M, Martínez-Ávila GCG (2018) Moringa plants: bioactive compounds and promising applications in food products. Food Res Int 111:438–450. https://doi.org/10.1016/j.foodres.2018.05.062

    Article  CAS  PubMed  Google Scholar 

  6. Fahey JW, Olson ME, Stephenson KK, Wade KL, Chodur GM, Odee D, Nouman W, Massiah M, Alt J, Egner PA, Hubbard WC (2018) The diversity of chemoprotective glucosinolates in Moringaceae (Moringa spp.). Sci Rep 8(1):7994. https://doi.org/10.1038/s41598-018-26058-4

  7. Maizuwo AI, Hassan AS, Momoh H, Muhammad JA (2017) Phytochemical constituents, biological activities, therapeutic potentials and nutritional values of Moringa oleifera (Zogale): a review. JDDMC 3(4):60-66. https://doi.org/10.11648/j.jddmc.20170304.12

  8. Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49(9):900–910. https://doi.org/10.1002/jms.3437

  9. Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I (2014) Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 103:114–122. https://doi.org/10.1016/j.phytochem.2014.03.028

  10. Cheng D, Gao L, Su S, Sargsyan D, Wu R, Raskin I, Kong AN (2019) Moringa isothiocyanate activates Nrf2: potential role in diabetic nephropathy. AAPS J 21(2):31. https://doi.org/10.1208/s12248-019-0301-6

  11. dos Santos AO, do Val DR, da Silveira FD, Gomes FIF, Freitas HC, de Assis EL, de Almeida DKC, da Silva IIC, Barbosa FG, Mafezoli J, da Silva MR, de Castro Brito GA, Clemente-Napimoga JT, Pinto VPT, Filho GC, Bezerra MM, Chaves HV (2018) Antinociceptive, anti-inflammatory and toxicological evaluation of semi-synthetic molecules obtained from a benzyl-isothiocyanate isolated from Moringa oleifera Lam. in a temporomandibular joint inflammatory hypernociception model in rats. Biomed Pharmacother 98:609–618. https://doi.org/10.1016/j.biopha.2017.12.102

  12. Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, Sthephens JM, Wang Z, Mynatt R, Cefalu W, Raskin I (2015) Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol Nutr Food Res 59(6):1013–1024. https://doi.org/10.1002/mnfr.201400679

  13. Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, Kozuka M, Ito Y, Tokuda H, Nishino H (1999) An antitumor promoter from Moringa oleifera Lam. Mutat Res Genet Toxicol Environ Mutagen 440(2):181–188. https://doi.org/10.1016/s1383-5718(99)00025-x

  14. Ramabulana T, Mavunda RD, Steenkamp PA, Piater LA, Dubery IA, Ndhlala AR, Madala NE (2017) Gamma radiation treatment activates glucomoringin synthesis in Moringa oleifera. Rev Bras Farmacogn 27(5):569–575. https://doi.org/10.1016/j.bjp.2017.05.012

  15. Tetteh ONA, Ulrichs C, Huyskens-Keil S, Mewis I, Amaglo NK, Oduro IN, Adarkwah C, Obeng-Ofori D, Förster N (2019) Effects of harvest techniques and drying methods on the stability of glucosinolates in Moringa oleifera leaves during post-harvest. Sci Hortic 246:998–1004. https://doi.org/10.1016/j.scienta.2018.11.089

  16. Ma ZF, Ahmad J, Zhang H, Khan I, Muhammad S (2019) Evaluation of phytochemical and medicinal properties of moringa (Moringa oleifera) as a potential functional food. S Afr J Bot 129:40–46. https://doi.org/10.1016/j.sajb.2018.12.002

  17. Melo V, Vargas N, Quirino T, Calvo CMC (2013) Moringa oleifera L. an underutilized tree with macronutrients for human health. Emir J Food Agric 25(10):785–789. https://doi.org/10.9755/ejfa.v25i10.17003

  18. Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Gallegos-Corona MA, González de Mejía E, Loarca-Piña G (2018) Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res Int 105:159–168. https://doi.org/10.1016/j.foodres.2017.11.004

  19. Sreelatha S, Padma PR (2009) Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr 64:303–311. https://doi.org/10.1007/s11130-009-0141-0

  20. Abdulkadir AR, Zawawi DD, Jahan MS (2016) Proximate and phytochemical screening of different parts of Moringa oleifera. Russ Agr Sci 42(1):34–36. https://doi.org/10.3103/s106836741601002x

  21. Prabakaran M, Kim S, Sasireka A, Chandrasekaran M, Chung I (2018) Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci 26:23–29. https://doi.org/10.1016/j.fbio.2018.09.003

  22. Bhattacharya A, Tiwari P, Sahu PK, Kumar S (2018) A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J Pharm Bioallied Sci 10(4):181–191. https://doi.org/10.4103/JPBS.JPBS_126_18

  23. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S (2015) Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci 16(12):12791–12835. https://doi.org/10.3390/ijms160612791

  24. Mahmud N, Islam M, Al-Fuad MS, Sana S, Ferdaus MJ, Ahmed S, Satya SI, Al-Mamum MA, Sakib N, Islam MS, Bonik SK (2019) Estimation of heavy metals, essential trace elements and anti-nutritional factors in leaves and stems from Moringa oleifera. IJFSB 4(2):51–55. https://doi.org/10.11648/j.ijfsb.20190402.14

  25. Popova A, Mihaylova D (2019) Antinutrients in plant-based foods: a review. Open Biotechnol J 13(1):68–76. https://doi.org/10.2174/1874070701913010068

    Article  CAS  Google Scholar 

  26. Cavaiuolo M, Ferrante A (2014) Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 6(4):1519–1538. https://doi.org/10.3390/nu6041519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cartea ME, de Haro A, Obregón S, Soengas P, Velasco P (2012) Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum Nutr 67(3):283–288. https://doi.org/10.1007/s11130-012-0300-6

  28. Deng Q, Zinoviadou KG, Galanakis CM, Orlien V, Grimi N, Vorobiev E, Lebovka N, Barba FJ (2015) The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7(3):357–381. https://doi.org/10.1007/s12393-014-9104-9

    Article  CAS  Google Scholar 

  29. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. https://doi.org/10.1016/S0031-9422(00)00316-2

    Article  CAS  Google Scholar 

  30. Collett MG, Stegelmeier BL, Tapper BA (2014) Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato-or cholangiotoxic in cattle? J Agric Food Chem 62(30):7370–7375. https://doi.org/10.1021/jf500526u

  31. Förster N, Ulrichs C, Schreiner M, Müller CT, Mewis I (2015a) Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem 166:456–464. https://doi.org/10.1016/j.foodchem.2014.06.043

  32. Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51(12):3546–3553. https://doi.org/10.1021/jf0211480

  33. Amaglo NK, Bennett RN, Lo Curto RB, Rosa EAS, Lo Turco V, Giuffrida A, Lo Curto A, Crea F, Timpo GM (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122(4):1047–1054. https://doi.org/10.1016/j.foodchem.2010.03.073

  34. Li X, Kushad MM (2005) Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots. Plant Physiol Biochem 43(6):503–511. https://doi.org/10.1016/j.plaphy.2005.03.015

  35. Vicas SI, Teusdea AC, Carbunar M, Socaci SA, Socaciu C (2013) Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods Hum Nutr 68(3):313–321. https://doi.org/10.1007/s11130-013-0367-8

  36. Tumer TB, Rojas-Silva P, Poulev A, Raskin I, Waterman C (2015) Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera. J Agric Food Chem 63(5):1505–1513. https://doi.org/10.1021/jf505014n

  37. Sturm C, Wagner AE (2017) Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. Int J Mol Sci 18(9):1890. https://doi.org/10.3390/ijms18091890

    Article  CAS  PubMed Central  Google Scholar 

  38. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW (2017) KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol 69:257–269. https://doi.org/10.1016/j.tifs.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, Raskin I (2017) Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One 12(8):e0182658. https://doi.org/10.1371/journal.pone.0182658

  40. Förster N, Ulrichs C, Schreiner M, Arndt N, Schmidt R, Mewis I (2015b) Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: impact of sulfur and water availability. J Agric Food Chem 63(11):2852–2861. https://doi.org/10.1021/jf506174v

  41. Djande CYA, Piater LA, Steenkamp PA, Madala NE, Dubery IA (2018) Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents. S Afr J Bot 115:81–89. https://doi.org/10.1016/j.sajb.2018.01.009

  42. Nobossé P, Fombang EN, Mbofung CM (2018) Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci Nutr 6(8):2188–2198. https://doi.org/10.1002/fsn3.783

  43. Doerr B, Wade KL, Stephenson KK, Reed SB, Fahey JW (2009) Cultivar effect on Moringa oleifera glucosinolate content and taste: a pilot study. Ecol Food Nutr 48(3):199–211. https://doi.org/10.1080/03670240902794630

  44. Chodur GM, Olson ME, Wade KL, Stephenson KK, Nouman W, Fahey JW (2018) Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Sci Rep 8(1):7995. https://doi.org/10.1038/s41598-018-26059-3

  45. Guzmán-Albores JM, Montes-Molina JA, Castañón-González JH, Abud-Archila M, Gutiérrez-Miceli FA, Ruiz-Valdiviezo VM (2020) Effect of different vermicompost doses and water stress conditions on plant growth and biochemical profile in medicinal plant, Moringa oleifera Lam. J Environ Biol 41(2):240–246. https://doi.org/10.22438/jeb/41/2/MRN-1164

  46. Bell L, Wagstaff C (2017) Enhancement of glucosinolate and isothiocyanate profiles in brassicaceae crops: addressing challenges in breeding for cultivation, storage, and consumer-related traits. J Aicgr Food Chem 65(43):9379–9403. https://doi.org/10.1021/acs.jafc.7b03628

  47. Sun J, Chen P (2019) Quantification of Total Glucosinolates and Isothiocyanates for common Brassicaceous vegetables consumed in the US market using cyclocondensation and thiocyanate ion measurement methods. J Anal Test 3(4):313–321. https://doi.org/10.1007/s41664-019-00114-y

  48. Tang L, Paonessa JD, Zhang Y, Ambrosone CB, McCann SE (2013) Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. J Funct Foods 5(4):1996–2001. https://doi.org/10.1016/j.jff.2013.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi H, Zhao Y, Sun J, Yu LL, Chen P (2017) Chemical profiling of glucosinolates in cruciferous vegetables-based dietary supplements using ultra-high performance liquid chromatography coupled to tandem high resolution mass spectrometry. J Food Compos Anal 61:67–72. https://doi.org/10.1016/j.jfca.2017.01.018

    Article  CAS  Google Scholar 

  50. Revelou PK, Kokotou MG, Pappas CS, Constantinou-Kokotou V (2017) Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy. J Food Compos Anal 61:47–51. https://doi.org/10.1016/j.jfca.2017.01.020

    Article  CAS  Google Scholar 

  51. Engsuwan J, Waranuch N, Limpeanchob N, Ingkaninan K (2017) HPLC methods for quality control of Moringa oleifera extract using isothiocyanates and astragalin as bioactive markers. Sci Asia 43(3):169–174. https://doi.org/10.2306/scienceasia1513-1874.2017.43.169

  52. Andini S, Araya-Cloutier C, Sanders M, Vincken JP (2020) Simultaneous analysis of glucosinolates and isothiocyanates by reversed-phase ultra-high-performance liquid chromatography–electron spray ionization–tandem mass spectrometry. J Agric Food Chem 68(10):3121–3131. https://doi.org/10.1021/acs.jafc.9b07920

  53. Jaafaru MS, Nordin N, Shaari K, Rosli R, Abdull Razis AF (2018) Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells. PLoS One 13(5):e0196403. https://doi.org/10.1371/journal.pone.0196403

  54. Jaafaru MS, Nordin N, Rosli R, Shaari K, Saad N, Noor NM, Abdull Razis AF (2019) Neuroprotective effects of glucomoringin-isothiocyanate against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. Neurotoxicology 75:89–104. https://doi.org/10.1016/j.neuro.2019.09.008

  55. Wang C, Wu R, Sargsyan D, Zheng M, Li S, Yin R, Su S, Raskin I, Kong AN (2019) CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J Nutr Biochem 68:69–78. https://doi.org/10.1016/j.jnutbio.2019.03.011

  56. Borgonovo G, De Petrocellis L, Schiano Moriello A, Bertoli S, Leone A, Battezzati A, Mazzini S, Bassoli A (2020) Moringin, a stable isothiocyanate from Moringa oleifera, activates the somatosensory and pain receptor TRPA1 channel in vitro. Molecules 25(4):976. https://doi.org/10.3390/molecules25040976

  57. Jaja-Chimedza A, Zhang L, Wolff K, Graf BL, Kuhn P, Moskal K, Carmouche R, Newman S, Salbaum JM, Raskin I (2018) A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J Funct Foods 47:376–385. https://doi.org/10.1016/j.jff.2018.05.056

  58. Giacoppo S, Galuppo M, De Nicola GR, Iori R, Bramanti P, Mazzon E (2015) 4(α-l-Rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem 23(1):80–88. https://doi.org/10.1016/j.bmc.2014.11.022

    Article  CAS  PubMed  Google Scholar 

  59. Cheenpracha S, Park EJ, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC (2010) Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorgan Med Chem 18(17):6598–6602. https://doi.org/10.1016/j.bmc.2010.03.057

  60. Park E, Cheenpracha S, Chang LC, Kondratyuk TP, Pezzuto JM (2011) Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2′-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera. Nutr Cancer 63(6):971–982. https://doi.org/10.1080/01635581.2011.589960

  61. Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, Bramanti P, Mazzon E (2014) Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 95:160–174. https://doi.org/10.1016/j.fitote.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  62. Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E (2017) The Isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute Parkinson's disease. Rejuvenation Res 20(1):50–63. https://doi.org/10.1089/rej.2016.1828

  63. Brunelli D, Tavecchio M, Falcioni C, Frapolli R, Erba E, Iori R, Rollin P, Barillari J, Manzotti C, Morazzoni P, d’Incalci M (2010) The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol 79(8):1141–1148. https://doi.org/10.1016/j.bcp.2009.12.008

  64. Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E (2016) Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 110:1–7. https://doi.org/10.1016/j.fitote.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  65. Michl C, Vivarelli F, Weigl J, De Nicola GR, Canistro D, Paolini M, Iori R, Rascle A (2016) The chemopreventive phytochemical moringin isolated from Moringa oleifera seeds inhibits JAK/STAT signaling. PLoS One 11(6):e0157430. https://doi.org/10.1371/journal.pone.0157430

  66. Maiyo FC, Moodley R, Singh M (2016) Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→ 4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anti-Cancer Agent Me 16(5):648–656. https://doi.org/10.2174/1871520615666151002110424

    Article  CAS  Google Scholar 

  67. Förster N, Mewis I, Glatt H, Haack M, Brigelius-Flohé R, Schreiner M, Ulrichs C (2016) Characteristic single glucosinolates from Moringa oleifera: induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food Funct 7(11):4660–4674. https://doi.org/10.1039/c6fo01231k

  68. Jaafaru MS, Abd Karim NA, Ashikin N, Mohamed Eliaser E, Maitalata Waziri P, Ahmed H, Mustapha Barau M, Kong L, Abdull Razis AF (2018) Nontoxic glucomoringin-isothiocyanate (GMG-ITC) rich soluble extract induces apoptosis and inhibits proliferation of human prostate adenocarcinoma cells (PC-3). Nutrients 10(9):1174. https://doi.org/10.3390/nu10091174

  69. Cirmi S, Ferlazzo N, Gugliandolo A, Musumeci L, Mazzon E, Bramanti A, Navarra M (2019) Moringin from Moringa oleifera seeds inhibits growth, arrests cell-cycle, and induces apoptosis of SH-SY5Y human neuroblastoma cells through the modulation of NF-κB and apoptotic related factors. Int J Mol Sci 20(8):1930. https://doi.org/10.3390/ijms20081930

  70. Wang X, Liu Y, Liu X, Lin Y, Zheng X, Lu Y (2018) Hydrogen sulfide (H2S) releasing capacity of isothiocyanates from Moringa oleifera Lam. Molecules 23(11):2809. https://doi.org/10.3390/molecules23112809

Download references

Funding

Author Norma A. Lopez-Rodriguez was supported by scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyT)-Mexico, number 926645.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the performance of the review. Literature search and writing were done by Norma A. Lopez-Rodriguez; supervision and literature advice were performed by Marcela Gaytán-Martínez and María de la Luz Reyes-Vega; the critical and final revision was done by Guadalupe Loarca-Piña.

Corresponding author

Correspondence to Guadalupe Loarca-Piña.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Rodriguez, N.A., Gaytán-Martínez, M., de la Luz Reyes-Vega, M. et al. Glucosinolates and Isothiocyanates from Moringa oleifera: Chemical and Biological Approaches. Plant Foods Hum Nutr 75, 447–457 (2020). https://doi.org/10.1007/s11130-020-00851-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00851-x

Keywords

Navigation