Skip to main content

Glucosinolates in Food

  • Reference work entry
  • First Online:
Glucosinolates

Abstract

Glucosinolates are secondary plant metabolites that have attracted researcher’s attention due to their potential chemopreventive activity. More than 120 different glucosinolates have been identified in plants, and several of these compounds have been studied for the potential anti-cancerogenic effect of their metabolic breakdown products (mainly ITCs).

Glucosinolates are peculiar of vegetables belonging to Brassicaceae family but are present also in few other species (capers, papaya, and moringa) used for human consumption. The type and concentration of glucosinolates in food are highly variable depending on several factors, such as genetics, cultivation site, cultivar, growth conditions, developmental stage, plant tissue, post-harvest handling, and food preparation methods. As types and concentration are also the main determinant of their biological activities, estimates of their content in food are essential tool to understand if a certain diet is adequate to deliver qualitatively and quantitatively appropriate glucosinolates and ITCs.

The aim of this chapter is to describe qualitative and quantitative glucosinolate distribution among commonly eaten food, as well as the effect of the post-harvest handling on the glucosinolate food content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4-GDB:

4-[β-d-Glucopyranosyldisulfanyl] butyl glucosinolate

DMB:

Dimeric 4-mercaptobutyl-glucosinolate

DW:

Dry weight

FW:

Fresh weight

GLS:

Glucosinolate

ITC:

Isothiocyanate

References

  1. Mewis I, Ulrich C, Schnitzler WH (2002) The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol Exp Appl 105:129–139. doi:10.1023/A:1022176524227

    Article  CAS  Google Scholar 

  2. Miles CI, Del Campo ML, Renwick JAA (2005) Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 191:147–155. doi:10.1007/s00359-004-0580-x

    Article  Google Scholar 

  3. Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  4. Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25. doi:10.1016/j.baae.2006.02.001

    Article  CAS  Google Scholar 

  5. Read DP, Feeny PP, Root RB (1970) Habitat selection by the aphid parasite diaeretiella rapae (hymenoptera: braconidae) and hyperparasite charips brassicae (hymenoptera: cynipidae). Can Entomol 102:1567–1578

    Article  Google Scholar 

  6. Mattiacci L, Dicke M, Posthumus MA (1994) Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. J Chem Ecol 20:2229–2247. doi:10.1007/BF02033199

    Article  CAS  Google Scholar 

  7. Choi E-J, Zhang P, Kwon H (2014) Determination of goitrogenic metabolites in the serum of male wistar rat fed structurally different glucosinolates. Toxicol Res 30:109–116

    Article  CAS  Google Scholar 

  8. U.S. Department of Health and Human Services PHS (2006) Agency for toxic substances and disease registry div. of tocicology and environmental medicine 1600 ecifton road ne, Mailstop F-32 Atlanta, Georgia 30333, US Dep Heal Hum Serv, p 298

    Google Scholar 

  9. Newkirk RW, Classen HL, Tyler RT (1997) Nutritional evaluation of low glucosinolate mustard meals (Brassica juncea) in broiler diets. Poult Sci 76:1272–1277

    Article  CAS  Google Scholar 

  10. Fahey JW, Haristoy X, Dolan PM et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615. doi:10.1007/BF02033199

    Google Scholar 

  11. Matsui TA, Murata H, Sakabe T et al (2007) Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol Rep 18:1263–1268

    CAS  Google Scholar 

  12. Smith TK, Lund EK, Parker ML et al (2004) Allyl-isothiocyanate causes mitotic block, loss of cell adhesion and disrupted cytoskeletal structure in HT29 cells. Carcinogenesis 25:1409–1415

    Article  CAS  Google Scholar 

  13. Smith TK (2003) Effects of Brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24:491–495

    Article  CAS  Google Scholar 

  14. Boreddy SR, Sahu RP, Srivastava SK (2011) Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS One 6, e25799. doi:10.1371/journal.pone.0025799

    Article  CAS  Google Scholar 

  15. Gupta P, Adkins C, Lockman P, Srivastava SK (2013) Metastasis of breast tumor cells to brain is suppressed by phenethyl isothiocyanate in a novel in vivo metastasis model. PLoS One 8:1–9. doi:10.1371/journal.pone.0067278

    Article  CAS  Google Scholar 

  16. Kang L, Wang Z-Y (2010) Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-alpha36. J Cell Mol Med 14:1485–1493

    Article  CAS  Google Scholar 

  17. Xu C, Shen G, Chen C et al (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495. doi:10.1038/sj.onc.1208656

    Article  CAS  Google Scholar 

  18. Fimognari C, Turrini E, Ferruzzi L et al (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res – Rev Mutat Res 750:107–131. doi:10.1016/j.mrrev.2011.12.001

    Article  CAS  Google Scholar 

  19. Baasanjav-Gerber C, Monien BH, Mewis I et al (2011) Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase. Mol Nutr Food Res 55:783–792. doi:10.1002/mnfr.201000352

    Article  CAS  Google Scholar 

  20. Jang M, Hong E, Kim G-H (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75:M412–M416

    Article  CAS  Google Scholar 

  21. Blažević I, Radonić A, Mastelić J et al (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121:1020–1028

    Article  CAS  Google Scholar 

  22. Kulisic-Bilusic T, Schmöller I, Schnäbele K et al (2012) The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem 132:261–267

    Article  CAS  Google Scholar 

  23. Vanden Bussche J, Noppe H, Verheyden K et al (2009) Analysis of thyreostats: a history of 35 years. Anal Chim Acta 637:2–12

    Article  CAS  Google Scholar 

  24. Srivastava SK, Xiao D, Lew KL et al (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24:1665–1670. doi:10.1093/carcin/bgg123

    Article  CAS  Google Scholar 

  25. Tsai S-C, Huang WW, Huang CW et al (2012) ERK-modulated intrinsic signaling and G(2)/M phase arrest contribute to the induction of apoptotic death by allyl isothiocyanate in MDA-MB-468 human breast adenocarcinoma cells. Int J Oncol 41:2065–2072. doi:10.3892/ijo.2012.1640

    CAS  Google Scholar 

  26. Manesh C, Kuttan G (2003) Effect of naturally occurring allyl and phenyl isothiocyanates in the inhibition of experimental pulmonary metastasis induced by B16F-10 melanoma cells. Fitoterapia 74:355–363

    Article  CAS  Google Scholar 

  27. Kumar A, D’Souza SS, Tickoo S et al (2009) Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo. Integr Cancer Ther 8:75–87

    Article  CAS  Google Scholar 

  28. Kim MJ, Kim SH, Lim SJ (2010) Comparison of the apoptosis-inducing capability of sulforaphane analogues in human colon cancer cells. Anticancer Res 30:3611–3620. doi:30/9/3611 [pii]

    Google Scholar 

  29. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89:2399–2403

    Article  CAS  Google Scholar 

  30. Lamy E, Schröder J, Paulus S et al (2008) Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem Toxicol 46:2415–2421. doi:10.1016/j.fct.2008.03.022

    Article  CAS  Google Scholar 

  31. Fimognari C, Nüsse M, Iori R et al (2004) The new isothiocyanate 4-(methylthio)butylisothiocyanate selectively affects cell-cycle progression and apoptosis induction of human leukemia cells. Invest New Drugs 22:119–129

    Article  CAS  Google Scholar 

  32. Yehuda H, Soroka Y, Zlotkin-Frušić M et al (2012) Isothiocyanates inhibit psoriasis-related proinflammatory factors in human skin. Inflamm Res 61:735–742. doi:10.1007/s00011-012-0465-3

    Article  CAS  Google Scholar 

  33. Abdull Razis AF, De Nicola GR, Pagnotta E et al (2012) 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch Toxicol 86:183–194. doi:10.1007/s00204-011-0750-x

    Article  CAS  Google Scholar 

  34. Scholl C, Eshelman BD, Barnes DM, Hanlon PR (2011) Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J Food Sci 76:504–511. doi:10.1111/j.1750-3841.2011.02078.x

    Article  CAS  Google Scholar 

  35. Salah-Abbes JB, Abbes S, Abdel-Wahhab MA, Oueslati R (2010) In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharm Pharmacol 62:231–239. doi:10.1211/jpp.62.02.0011

    Article  Google Scholar 

  36. Wang N, Wang W, Huo P et al (2014) Mitochondria-mediated apoptosis in human lung cancer A549 Cells by 4-Methylsulfinyl-3-butenyl isothiocyanate from radish seeds. Asian Pacific J Cancer Prev 15:2133–2139. doi:10.7314/APJCP.2014.15.5.2133

    Article  Google Scholar 

  37. Jakubikova J, Bao Y, Bodo J, Sedlak J (2006) Isothiocyanate iberin modulates phase II enzymes, posttranslational modification of histones and inhibits growth of Caco-2 cells by inducing apoptosis. Neoplasma 53:463–470

    CAS  Google Scholar 

  38. Wang N, Shen L, Qiu S et al (2010) Analysis of the isothiocyanates present in three Chinese Brassica vegetable seeds and their potential anticancer bioactivities. Eur Food Res Technol 231:951–958

    Article  CAS  Google Scholar 

  39. Ben Salah-Abbes J, Abbes S, Ouanes Z et al (2009) Isothiocyanate from the Tunisian radish (Raphanus sativus) prevents genotoxicity of Zearalenone in vivo and in vitro. Mutat Res – Genet Toxicol Environ Mutagen 677:59–65. doi:10.1016/j.mrgentox.2009.05.017

    Article  CAS  Google Scholar 

  40. Myzak MC, Karplus PA, Chung F-L, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  CAS  Google Scholar 

  41. Kanematsu S, Yoshizawa K, Uehara N et al (2011) Sulforaphane inhibits the growth of KPL-1 human breast cancer cells in vitro and suppresses the growth and metastasis of orthotopically transplanted KPL-1 cells in female athymic mice. Oncol Rep 26:603–608

    CAS  Google Scholar 

  42. Heiss E, Herhaus C, Klimo K et al (2001) Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276:32008–32015. doi:10.1074/jbc.M104794200

    Article  CAS  Google Scholar 

  43. Zhang Y, Kensler TW, Cho CG et al (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A 91:3147–3150

    Article  CAS  Google Scholar 

  44. Sun CC, Li SJ, Yang CL et al (2015) Sulforaphane attenuates muscle inflammation in dystrophin-deficient mdx mice via NF-E2-related factor 2 (Nrf2)-mediated inhibition of NF-κB signaling pathway. J Biol Chem 290:17784–17795

    Article  CAS  Google Scholar 

  45. Jackson SJT, Singletary KW, Venema RC (2007) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vascul Pharmacol 46:77–84

    Article  CAS  Google Scholar 

  46. Rodríguez-Cantú LN, Gutiérrez-Uribe JA, Arriola-Vucovich J et al (2011) Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J Agric Food Chem 59:1095–1103

    Article  CAS  Google Scholar 

  47. Morroni F, Tarozzi A, Sita G et al (2013) Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36:63–71. doi:10.1016/j.neuro.2013.03.004

    Article  CAS  Google Scholar 

  48. Adesida A, Edwards LG, Thornalley PJ (1996) Inhibition of human leukaemia 60 cell growth by mercapturic acid metabolites of phenylethyl isothiocyanate. Food Chem Toxicol 34:385–392

    Article  CAS  Google Scholar 

  49. Telang NT, Katdare M, Bradlow HL et al (1997) Inhibition of proliferation and modulation of estradiol metabolism: novel mechanisms for breast cancer prevention by the phytochemical indole-3-carbinol. Exp Biol Med 216:246–252

    Google Scholar 

  50. Nakamura Y, Yogosawa S, Izutani Y et al (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100

    Article  CAS  Google Scholar 

  51. Bjeldanes LF, Kim JY, Grose KR et al (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A 88:9543–9547

    Article  CAS  Google Scholar 

  52. Adwas AA, Elkhoely AA, Kabel AM et al (2016) Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 22:36–43

    Article  CAS  Google Scholar 

  53. Wakabayashi K, Nagao M, Ochiai M, et al (1987) Recently identified nitrite-reactive compounds in food: occurrence and biological properties of the nitrosated products. IARC Sci Publ 84:287–291

    Google Scholar 

  54. Brunelli D, Tavecchio M, Falcioni C et al (2010) The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol 79:1141–1148

    Article  CAS  Google Scholar 

  55. Galuppo M, Giacoppo S, De Nicola GR et al (2014) Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 95:160–174

    Article  CAS  Google Scholar 

  56. Giacoppo S, Galuppo M, Montaut S et al (2015) An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 106:12–21. doi:10.1016/j.fitote.2015.08.001

    Article  CAS  Google Scholar 

  57. Morris CR, Chen SC, Zhou L et al (2004) Inhibition by allyl sulfides and phenethyl isothiocyanate of methyl-n-pentylnitrosamine depentylation by rat esophageal microsomes, human and rat CYP2E1, and rat CYP2A3. Nutr Cancer 48:54–63

    Article  CAS  Google Scholar 

  58. Gupta P, Kim B, Kim SH, Srivastava SK (2014) Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 58:1685–1707. doi:10.1002/mnfr.201300684

    Article  CAS  Google Scholar 

  59. Satyan KS, Swamy N, Dizon DS et al (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 103:261–270

    Article  CAS  Google Scholar 

  60. Huang C, Ma WY, Li J et al (1998) Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res 58:4102–4106

    CAS  Google Scholar 

  61. Stoner G (1998) Inhibition of N’-nitrosonornicotine-induced esophageal tumorigenesis by 3-phenylpropyl isothiocyanate. Carcinogenesis 19:2139–2143

    Article  CAS  Google Scholar 

  62. Solt DB, Chang K, Helenowski I, Rademaker AW (2003) Phenethyl isothiocyanate inhibits nitrosamine carcinogenesis in a model for study of oral cancer chemoprevention. Cancer Lett 202:147–152

    Article  CAS  Google Scholar 

  63. Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67:2239–2246

    Article  CAS  Google Scholar 

  64. Rose P, Yen KW, Choon NO, Whiteman M (2005) Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages. Nitric Oxide – Biol Chem 12:237–243. doi:10.1016/j.niox.2005.03.001

    Article  CAS  Google Scholar 

  65. Moon PD, Kim HM (2012) Anti-inflammatory effect of phenethyl isothiocyanate, an active ingredient of Raphanus sativus Linne. Food Chem 131:1332–1339. doi:10.1016/j.foodchem.2011.09.127

    Article  CAS  Google Scholar 

  66. Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res 58:4632–4639

    CAS  Google Scholar 

  67. Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709. doi:10.1093/carcin/bgh179

    Article  CAS  Google Scholar 

  68. Sahu RP, Srivastava SK (2009) The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst 101:176–193

    Article  CAS  Google Scholar 

  69. Boreddy SR, Pramanik KC, Srivastava SK (2011) Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin Cancer Res 17:1784–1795

    Article  CAS  Google Scholar 

  70. Kermanshai R, McCarry BE, Rosenfeld J et al (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435. doi:10.1016/S0031-9422(01)00077-2

    Article  CAS  Google Scholar 

  71. McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90:687–697. doi:10.1079/BJN2003917

    Article  CAS  Google Scholar 

  72. Verkerk R, Schreiner M, Krumbein A et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):S219

    Article  Google Scholar 

  73. Wang J, Gu H, Yu H et al (2012) Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 133:735–741. doi:10.1016/j.foodchem.2012.01.085

    Article  CAS  Google Scholar 

  74. Renaud ENC, Lammerts van Bueren ET, Myers JR et al (2014) Variation in Broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition. PLoS One 9, e95683. doi:10.1371/journal.pone.0095683

    Article  CAS  Google Scholar 

  75. Baenas N, García-Viguera C, Moreno DA (2014) Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. J Agric Food Chem 62:1881–1889. doi:10.1021/jf404876z

    Article  CAS  Google Scholar 

  76. Traka MH, Saha S, Huseby S et al (2013) Genetic regulation of glucoraphanin accumulation in Beneforte broccoli. New Phytol 198:1085–1095. doi:10.1111/nph.12232

    Article  CAS  Google Scholar 

  77. Zabaras D, Roohani M, Krishnamurthy R et al (2013) Characterisation of taste-active extracts from raw Brassica oleracea vegetables. Food Funct 4:592–601. doi:10.1039/c2fo30192j

    Article  CAS  Google Scholar 

  78. Bhandari S, Kwak J-H (2015) Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228–1243. doi:10.3390/molecules20011228

    Article  CAS  Google Scholar 

  79. Yi G-E, Robin A, Yang K et al (2015) Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089–13111. doi:10.3390/molecules200713089

    Article  CAS  Google Scholar 

  80. Vicas SI, Teusdea AC, Carbunar M et al (2013) Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods Hum Nutr 68:313–321. doi:10.1007/s11130-013-0367-8

    Article  CAS  Google Scholar 

  81. Verkerk R, Tebbenhoff S, Dekker M (2010) Variation and distribution of glucosinolates in 42 cultivars of Brassica oleracea vegetable crops. Acta Hortic 63–70. doi:10.17660/ActaHortic.2010.856.7

    Google Scholar 

  82. Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–976. doi:10.1016/j.foodchem.2008.07.018

    Article  CAS  Google Scholar 

  83. Gratacós-Cubarsí M, Ribas-Agustí A, García-Regueiro JA, Castellari M (2010) Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem 121:257–263. doi:10.1016/j.foodchem.2009.11.081

    Article  CAS  Google Scholar 

  84. Hong E, Kim SJ, Kim GH (2011) Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chem 128:1115–1120. doi:10.1016/j.foodchem.2010.11.102

    Article  CAS  Google Scholar 

  85. Lee MK, Chun JH, Byeon DH et al (2014) Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT – Food Sci Technol 58:93–101. doi:10.1016/j.lwt.2014.03.001

    Article  CAS  Google Scholar 

  86. Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung 48:25–33

    Article  CAS  Google Scholar 

  87. Sun B, Liu N, Zhao Y et al (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124:941–947. doi:10.1016/j.foodchem.2010.07.031

    Article  CAS  Google Scholar 

  88. Schreiner M, Beyene B, Krumbein A, Stützel H (2009) Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Agric Food Chem 57:7259–7263. doi:10.1021/jf901076h

    Article  CAS  Google Scholar 

  89. Barbieri G, Pernice R, Maggio A et al (2008) Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem 107:1687–1691. doi:10.1016/j.foodchem.2007.09.054

    Article  CAS  Google Scholar 

  90. Sasaki K, Neyazaki M, Shindo K et al (2012) Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Anal Technol Biomed Life Sci 903:171–176. doi:10.1016/j.jchromb.2012.07.017

    Article  CAS  Google Scholar 

  91. Park WT, Kim JK, Park S et al (2012) Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). J Agric Food Chem 60:8111–8116. doi:10.1021/jf301667j

    Article  CAS  Google Scholar 

  92. Park M-H, Valan Arasu M, Park N-Y et al (2013) Variation of glucoraphanin and glucobrassicin: anticancer components in Brassica during processing. Food Sci Technol 33:624–631. doi:10.1590/S0101-20612013000400005

    Google Scholar 

  93. Sodhi YS, Mukhopadhyay A, Arumugam N et al (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511

    Article  CAS  Google Scholar 

  94. Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual 79:168–174

    CAS  Google Scholar 

  95. Tong Y, Gabriel-Neumann E, Ngwene B et al (2014) Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem 152:190–196. doi:10.1016/j.foodchem.2013.11.099

    Article  CAS  Google Scholar 

  96. Bhandari S, Jo J, Lee J (2015) Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827–15841. doi:10.3390/molecules200915827

    Article  CAS  Google Scholar 

  97. Gupta S, Sangha MK, Kaur G, et al (2014) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 345–356. doi:10.1007/s10681-014-1204-3

    Google Scholar 

  98. Fallovo C, Schreiner M, Schwarz D et al (2011) Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy Brassica species. J Agric Food Chem 59:4198–4207. doi:10.1021/jf1048904

    Article  CAS  Google Scholar 

  99. Wiesner M (2013) Genotypic variation of the glucosinolate profile in Pak Choi (Brassica rapa ssp.). J Agric Food Chem 61:1943–1953. doi:10.1021/jf303970k

    Article  CAS  Google Scholar 

  100. Zhu B, Yang J, Zhu Z (2013) Variation in glucosinolates in pak choi cultivars and various organs at different stages of vegetative growth during the harvest period. J Zhejiang Univ Sci B 14:309–317. doi:10.1631/jzus.B1200213

    Article  Google Scholar 

  101. Visentin M, Tava A, Iori R, Palmieri S (1992) Isolation and identification of trans-4-(Methylthio)-3-butenyl glucosinolate from radish roots (Raphanus sativus L.). J Agri Food Chem 40:1687–1691

    Article  CAS  Google Scholar 

  102. Bell L, Oruna-Concha MJ, Wagstaff C (2015) Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem 172:852–861. doi:10.1016/j.foodchem.2014.09.116

    Article  CAS  Google Scholar 

  103. D’Antuono LF, Elementi S, Neri R (2008) Glucosinolates in diplotaxis and eruca leaves: diversity, taxonomic relations and applied aspects. Phytochemistry 69:187–199. doi:10.1016/j.phytochem.2007.06.019

    Article  CAS  Google Scholar 

  104. Chun J-H, Arasu MV, Lim Y-P, Kim S-J (2013) Variation of major glucosinolates in different varieties and lines of rocket salad. Hortic Environ Biotechnol 54:206–213. doi:10.1007/s13580-013-0122-y

    Article  CAS  Google Scholar 

  105. Jin J, Koroleva OA, Gibson T et al (2009) Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J Agric Food Chem 57:5227–5234. doi:10.1021/jf9002973

    Article  CAS  Google Scholar 

  106. Bell L, Wagstaff C (2014) Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 62:4481–4492

    Article  CAS  Google Scholar 

  107. Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD-MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133:1025–1033. doi:10.1016/j.foodchem.2012.01.021

    Article  CAS  Google Scholar 

  108. Shiva RB, Jung-Ho K (2014) Seasonal variation in phytochemicals and antioxidant activities in different tissues of various Broccoli cultivars. Afr J Biotechnol 13:604–615. doi:10.5897/AJB2013.13432

    Article  CAS  Google Scholar 

  109. Valverde J, Reilly K, Villacreces S et al (2015) Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. J Sci Food Agric 95:1163–1171. doi:10.1002/jsfa.6804

    Article  CAS  Google Scholar 

  110. Brown AF, Yousef GG, Reid RW et al (2015) Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theor Appl Genet 128:1431–1447. doi:10.1007/s00122-015-2517-x

    Article  CAS  Google Scholar 

  111. Ku KM, Jeffery EH, Juvik J (2014) Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. J Sci Food Agric 94:2090–2096. doi:10.1002/jsfa.6529

    Article  CAS  Google Scholar 

  112. Reilly K, Valverde J, Finn L et al (2014) Potential of cultivar and crop management to affect phytochemical content in winter-grown sprouting broccoli (Brassica oleracea L. var. italica). J Sci Food Agric 94:322–330. doi:10.1002/jsfa.6263

    Article  CAS  Google Scholar 

  113. Aires A, Fernandes C, Carvalho R et al (2011) Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules 16:6816–6832. doi:10.3390/molecules16086816

    Article  CAS  Google Scholar 

  114. Alanís-Garza PA, Becerra-Moreno A, Mora-Nieves JL et al (2015) Effect of industrial freezing on the stability of chemopreventive compounds in broccoli. Int J Food Sci Nutr 66:282–288. doi:10.3109/09637486.2015.1007451

    Article  CAS  Google Scholar 

  115. Alarcón-Flores MI, Romero-González R, Martínez Vidal JL et al (2014) Monitoring of phytochemicals in fresh and fresh-cut vegetables: a comparison. Food Chem 142:392–399. doi:10.1016/j.foodchem.2013.07.065

    Article  CAS  Google Scholar 

  116. Rodríguez-Hernández MDC, Moreno D, Carvajal M et al (2012) Natural antioxidants in purple sprouting broccoli under Mediterranean climate. J Food Sci 77:C1058–C1063. doi:10.1111/j.1750-3841.2012.02886.x

    Article  CAS  Google Scholar 

  117. Dominguez-Perles R, Martinez-Ballesta MC, Riquelme F et al (2011) Novel varieties of broccoli for optimal bioactive components under saline stress. J Sci Food Agric 91:1638–1647. doi:10.1002/jsfa.4360

    Article  CAS  Google Scholar 

  118. Tian Q, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 343:93–99. doi:10.1016/j.ab.2005.04.045

    Article  CAS  Google Scholar 

  119. Cieślik E, Leszczyńska T, Filipiak-Florkiewicz A et al (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981. doi:10.1016/j.foodchem.2007.04.047

    Article  CAS  Google Scholar 

  120. Pellegrini N, Chiavaro E, Gardana C et al (2010) Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J Agric Food Chem 58:4310–4321. doi:10.1021/jf904306r

    Article  CAS  Google Scholar 

  121. Ciska E, Drabińska N, Honke J, Narwojsz A (2015) Boiled Brussels sprouts: a rich source of glucosinolates and the corresponding nitriles. J Funct Foods 19:91–99. doi:10.1016/j.jff.2015.09.008

    Article  CAS  Google Scholar 

  122. Nugrahedi PY, Dekker M, Widianarko B, Verkerk R (2016) Quality of cabbage during long term steaming; phytochemical, texture and colour evaluation. LWT – Food Sci Technol 65:421–427. doi:10.1016/j.lwt.2015.08.034

    Article  CAS  Google Scholar 

  123. Martinez-Villaluenga C, Peñas E, Frias J et al (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci. doi:10.1111/j.1750-3841.2008.01017.x

    Google Scholar 

  124. Kusznierewicz B, Baczek-Kwinta R, Bartoszek A et al (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31:2482–2489. doi:10.1002/etc.1977

    Article  CAS  Google Scholar 

  125. Sarikamiş G, Balkaya A, Yanmaz R (2009) Glucosinolates within a collection of white head cabbages (Brassica oleracea var. capitata sub.var. alba) from Turkey. Afr J Biotechnol 8:5046–5052

    Google Scholar 

  126. Palani K, Harbaum-Piayda B, Meske D et al (2016) Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755–762. doi:10.1016/j.foodchem.2015.06.012

    Article  CAS  Google Scholar 

  127. Peñas E, Frias J, Martínez-Villaluenga C, Vidal-Valverde C (2011) Bioactive compounds, myrosinase activity, and antioxidant capacity of white cabbages grown in different locations of Spain. J Agric Food Chem 59:3772–3779. doi:10.1021/jf200356m

    Article  CAS  Google Scholar 

  128. Dekker M, Hennig K, Verkerk R (2009) Differences in thermal stability of glucosinolates in five Brassica vegetables. Czech J Food Sci 27:85–88

    Google Scholar 

  129. Jakovljević T, Cvjetko M, Sedak M et al (2013) Balance of glucosinolates content under Cd stress in two Brassica species. Plant Physiol Biochem 63:99–106. doi:10.1016/j.plaphy.2012.10.019

    Article  CAS  Google Scholar 

  130. Fernández-León AM, Lozano M, González D et al (2014) Bioactive compounds content and total antioxidant activity of two savoy cabbages. Czech J Food Sci 32:549–554

    Google Scholar 

  131. Volden J, Borge GIA, Hansen M et al (2009) Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant-related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). LWT – Food Sci Technol 42:63–73. doi:10.1016/j.lwt.2008.05.018

    Article  CAS  Google Scholar 

  132. Kim JK, Chu SM, Kim SJ et al (2010) Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem 119:423–428. doi:10.1016/j.foodchem.2009.08.051

    Article  CAS  Google Scholar 

  133. Hong E, Kim G-H (2014) Variation of glucosinolates composition during seedling and growth stages of Brassica rapa L. ssp pekinensis. Kor J Hort Sci Technol 32(5):730–738

    CAS  Google Scholar 

  134. Lozano-Baena MD, Tasset I, Obregón-Cano S et al (2015) Antigenotoxicity and tumor growing inhibition by leafy Brassica carinata and sinigrin. Molecules 20:15748–15765. doi:10.3390/molecules200915748

    Article  CAS  Google Scholar 

  135. Bellostas N, Sørensen JC, Sørensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. J Sci Food Agric 87:1586–1594

    Article  CAS  Google Scholar 

  136. De Pascale S, Maggio A, Pernice R et al (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Eur J Agron 26:418–424. doi:10.1016/j.eja.2006.12.009

    Article  CAS  Google Scholar 

  137. Gallo M, Esposito G, Ferracane R et al (2013) Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort. Eur Food Res Technol 236:1063–1071. doi:10.1007/s00217-013-1971-4

    Article  CAS  Google Scholar 

  138. Cartea ME, Velasco P, Obregón S et al (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403–410

    Article  CAS  Google Scholar 

  139. Ferioli F, Giambanelli E, D’Antuono LF et al (2013) Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. J Sci Food Agric 93:3478–3489. doi:10.1002/jsfa.6253

    Article  CAS  Google Scholar 

  140. Korus A, Słupski J, Gębczyński P, Banaś A (2014) Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. LWT – Food Sci Technol 59:1003–1008

    Article  CAS  Google Scholar 

  141. Hollands WJ, Saha S, Hayran O et al (2013) Lack of effect of bioactive-rich extracts of pomegranate, persimmon, nettle, dill, kale and Sideritis and isolated bioactives on platelet function. J Sci Food Agric 93:3588–3594. doi:10.1002/jsfa.6213

    Article  CAS  Google Scholar 

  142. Olsen H, Grimmer S, Aaby K et al (2012) Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica). J Agric Food Chem 60:7375–7383. doi:10.1021/jf300875f

    Article  CAS  Google Scholar 

  143. Choi S-H, Ryu D-K, Park S et al (2010) Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Korean J Hortic Sci Technol 28:469–475

    CAS  Google Scholar 

  144. Park WT, Kim YB, Seo JM et al (2013) Accumulation of anthocyanin and associated gene expression in radish sprouts exposed to light and methyl jasmonate. J Agric Food Chem 61:4127–4132. doi:10.1021/jf400164g

    Article  CAS  Google Scholar 

  145. Gupta S, Sangha MK, Kaur G et al (2014) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356. doi:10.1007/s10681-014-1204-3

    Article  CAS  Google Scholar 

  146. Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838. doi:10.1080/10408398.2012.688076

    Article  CAS  Google Scholar 

  147. Zhu B, Yang J, He Y et al (2015) Glucosinolate accumulation and related gene expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in response to insecticide application. J Agric Food Chem 63:9683–9689. doi:10.1021/acs.jafc.5b03894

    Article  CAS  Google Scholar 

  148. Mucha-Pelzer T, Mewis I, Ulrichs C (2010) Response of glucosinolate and flavonoid contents and composition of Brassica rapa ssp. chinensis (L.) Hanelt to silica formulations used as insecticides. J Agric Food Chem 58:12473–12480. doi:10.1021/jf102847p

    Article  CAS  Google Scholar 

  149. He H, Liu L, Song S et al (2003) Evaluation of glucosinolate composition and contents in Chinese Brassica vegetables. Acta Hortic 620:85–92

    Article  CAS  Google Scholar 

  150. Chen X, Zhu J, Gerendás J, Zimmermann N (2008) Glucosinolates in chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. HortScience 43:571–574

    Google Scholar 

  151. Hanlon PR, Barnes DM (2011) Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots. J Food Sci 76:C185–C192. doi:10.1111/j.1750-3841.2010.01972.x

    Article  CAS  Google Scholar 

  152. Ishida M, Nagata M, Ohara T et al (2012) Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed Sci 62:63–70. doi:10.1270/jsbbs.62.63

    Article  CAS  Google Scholar 

  153. Kim SJ, Chae SC, Park SU (2013) Glucosinolate accumulation in three important radish (Raphanus sativus) cultivars. Aust J Crop Sci 7:1843–1847

    CAS  Google Scholar 

  154. Jahangir M, Abdel-Farid IB, de Vos RCH et al (2014) Metabolomic variation of Brassica rapa var. rapa (var. Raapstelen) and Raphanus sativus L. at different developmental stages. Pak J Bot 46:1445–1452

    Google Scholar 

  155. Font R, del RÌo-Celestino M, Cartea E, de Haro-BailÛn A (2005) Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66:175–185. doi:10.1016/j.phytochem.2004.11.011

    Article  CAS  Google Scholar 

  156. Cartea ME, Rodríguez VM, De Haro A et al (2008) Variation of glucosinolates and nutritional value in nabicol (Brassica napus pabularia group). Euphytica 159:111–122. doi:10.1007/s10681-007-9463-x

    Article  CAS  Google Scholar 

  157. Kim S-J, Chiami K, Ishii G (2006) Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca sativa Mill.). Soil Sci Plant Nutr 52:387–393. doi:10.1111/j.1747-0765.2006.00048.x

    Article  CAS  Google Scholar 

  158. Villatoro-Pulido M, Priego-Capote F, Álvarez-Sánchez B et al (2013) An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J Sci Food Agric 93:3809–3819. doi:10.1002/jsfa.6286

    Article  CAS  Google Scholar 

  159. Kim S-J, Ishii G (2007) Effect of storage temperature and duration on glucosinolate, total vitamin C and nitrate contents in rocket salad (Eruca sativa Mill.). J Sci Food Agric 87:966–973

    Article  CAS  Google Scholar 

  160. Francisco M, Moreno DA, Cartea ME et al (2009) Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J Chromatogr A 1216:6611–6619. doi:10.1016/j.chroma.2009.07.055

    Article  CAS  Google Scholar 

  161. Cartea ME, de Haro A, Obregón S et al (2012) Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum Nutr 67:283–288. doi:10.1007/s11130-012-0300-6

    Article  CAS  Google Scholar 

  162. Justen VL, Cohen JD, Gardner G, Fritz VA (2011) Seasonal variation in glucosinolate accumulation in turnip cultivars grown with colored plastic mulches. HortScience 46:1608–1614

    CAS  Google Scholar 

  163. Matthäus B, Özcan M (2002) Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J Agric Food Chem 50:7323–7325

    Article  CAS  Google Scholar 

  164. Bor M, Ozkur O, Ozdemir F, Turkan I (2009) Identification and characterization of the glucosinolate–myrosinase system in caper (Capparis ovata desf.). Plant Mol Biol Report 27:518–525. doi:10.1007/s11105-009-0117-0

    Article  CAS  Google Scholar 

  165. Bianco G, Lelario F, Battista FG et al (2012) Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J Mass Spectrom 47:1160–1169. doi:10.1002/jms.2996

    Article  CAS  Google Scholar 

  166. Maldini M, Maksoud S, Natella F et al (2014) Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 49:900–910. doi:10.1002/jms.3437

    Article  CAS  Google Scholar 

  167. Amaglo NK, Bennett RN, Lo Curto RB et al (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122:1047–1054. doi:10.1016/j.foodchem.2010.03.073

    Article  CAS  Google Scholar 

  168. Rossetto MRM, Do Nascimento JRO, Purgatto E et al (2008) Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening. J Agric Food Chem 56:9592–9599. doi:10.1021/jf801934x

    Article  CAS  Google Scholar 

  169. O’Hare TJ, Wong LS, Williams DJ, Pun S (2008) Papaya (Carica papaya) as a source of glucotropaeolin and its active derivative, benzyl-isothiocyanate. Proc Trop Fruits Hum Nutr Heal Conf 2008:197–201

    Google Scholar 

  170. Li ZY, Wang Y, Shen WT, Zhou P (2012) Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian Pac J Trop Med 5:231–233. doi:10.1016/S1995-7645(12)60030-3

    Article  CAS  Google Scholar 

  171. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci 94:10367–10372. doi:10.1073/pnas.94.19.10367

    Article  CAS  Google Scholar 

  172. Taormina PJ, Beuchat LR, Slutsker L (1999) Infections associated with eating seed sprouts: an international concern. Emerg Infect Dis 5:626–634. doi:10.3201/eid0505.990503

    Article  CAS  Google Scholar 

  173. Foley C, Harvey E, Bidol SA et al (2013) Outbreak of Escherichia coli O104:H4 infections associated with sprout consumption – Europe and North America, May-July 2011. Morb Mortal Wkly Rep 62:1029–1031

    Google Scholar 

  174. Vale AP, Santos J, Brito NV et al (2015) Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry. doi:10.1016/j.phytochem.2015.02.004

    Google Scholar 

  175. Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60:11409–11420. doi:10.1021/jf302863c

    Article  CAS  Google Scholar 

  176. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019. doi:10.1016/j.foodchem.2010.01.040

    Article  CAS  Google Scholar 

  177. Guo L, Yang R, Zhou Y, Gu Z (2015) Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Eur Food Res Technol. doi:10.1007/s00217-015-2522-y

    Google Scholar 

  178. Kusznierewicz B, Iori R, Piekarska A et al (2013) Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: method verification for sprouts of different Brassicaceae species extract. J Chromatogr A 1278:108–115. doi:10.1016/j.chroma.2012.12.075

    Article  CAS  Google Scholar 

  179. De Nicola GR, Bagatta M, Pagnotta E et al (2013) Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts. Food Chem 141:297–303. doi:10.1016/j.foodchem.2013.02.102

    Article  CAS  Google Scholar 

  180. Mewis I, Schreiner M, Nguyen CN et al (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53:1546–1560. doi:10.1093/pcp/pcs096

    Article  CAS  Google Scholar 

  181. Piekarska A, Kołodziejski D, Pilipczuk T et al (2014) The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int J Food Sci Nutr 65:692–702. doi:10.3109/09637486.2014.917148

    Article  CAS  Google Scholar 

  182. Roine P, Uksila E, Teir H, Rapola J (1960) Histopathological changes in rats and pigs fed rapeseed oil. Z Ernahrungswiss 1:118–124. doi:10.1007/BF02021352

    Article  CAS  Google Scholar 

  183. Abdellatif AM (1972) Cardiopathogenic effects of dietary rapeseed oil. Nutr Rev 30:2–6

    Article  CAS  Google Scholar 

  184. Beare-Rogers JL, Nera EA, Heggtveit HA (1971) Cardiac lipid changes in rats fed oils containing long-chain fatty acids. Can Inst Food Technol J 4:120–124. doi:10.1016/S0008-3860(71)74194-4

    Article  CAS  Google Scholar 

  185. Kramer JKG, Mahadevan S, Hunt JR et al (1973) Growth rate, lipid composition, metabolism and myocardial lesions of rats fed rapeseed oils (Brassica campestris var. Arlo, Echo and Span, and B. napus var. Oro). J Nutr 103:1696–1708

    CAS  Google Scholar 

  186. Aherne FX, Bowland JP, Hardin RT, Christian RG (1976) Performance of myocardial and blood seral changes in pigs fed diets containing high or low erucic acid rapeseed oils. Can J Anim Sci 56:275–284. doi:10.4141/cjas76-032

    Article  CAS  Google Scholar 

  187. Badawy IH, Atta B, Ahmed WM (1994) Biochemical and toxicological studies on the effect of high and low erucic acid rapeseed oil on rats. Nahrung 38:402–411

    Article  CAS  Google Scholar 

  188. Przybylski R (2011) Vegetable oils in food technology. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  189. Prchalová J, Kovařík F, Ševčík R et al (2014) Characterization of mustard seeds and paste by DART ionization with time-of-flight mass spectrometry. J Mass Spectrom 49:811–818

    Article  CAS  Google Scholar 

  190. Paunovic D, Solevic-Knudsen T, Krivokapic M et al (2012) Sinalbin degradation products in mild yellow mustard paste. Hem Ind 66:29–32

    Article  CAS  Google Scholar 

  191. Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943. doi:10.1021/jf048986+

    Article  CAS  Google Scholar 

  192. Bennett RN, Mellon FA, Foidl N et al (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51:3546–3553. doi:10.1021/jf0211480

    Article  CAS  Google Scholar 

  193. Papas A, Ingalls JR, Campbell LD (1979) Studies on the effects of rapeseed meal on thyroid status of cattle, glucosinolate and iodine content of milk and other parameters. J Nutr 109:1129–1139

    CAS  Google Scholar 

  194. Persano Oddo L, Piana L, Bogdanov S et al (2004) Botanical species giving unifloral honey in Europe. Apidologie 35:S82–S93

    Article  Google Scholar 

  195. Ares AM, Nozal MJ, Bernal J (2015) Development and validation of a liquid chromatography-tandem mass spectrometry method to determine intact glucosinolates in bee pollen. J Chromatogr B 1000:49–56. doi:10.1016/j.jchromb.2015.07.017

    Article  CAS  Google Scholar 

  196. Truchado P, Tourn E, Gallez LM et al (2010) Identification of botanical biomarkers in Argentinean diplotaxis honeys: flavonoids and glucosinolates. J Agric Food Chem 58:12678–12685. doi:10.1021/jf103589c

    Article  CAS  Google Scholar 

  197. Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed Engl 53:11430–11450. doi:10.1002/anie.201402639

    Article  CAS  Google Scholar 

  198. Hennig K, Verkerk R, van Boekel MAJS et al (2014) Food science meets plant science: a case study on improved nutritional quality by breeding for glucosinolate retention during food processing. Trends Food Sci Technol 35:61–68. doi:10.1016/j.tifs.2013.10.006

    Article  CAS  Google Scholar 

  199. Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015) A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838

    Article  CAS  Google Scholar 

  200. Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032. doi:10.1002/(SICI)1097-0010(19990515)79:7<1028::AID-JSFA322>3.0.CO;2-I

    Article  CAS  Google Scholar 

  201. Rangkadilok N, Tomkins B, Nicolas ME et al (2002) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50:7386–7391. doi:10.1021/jf0203592

    Article  CAS  Google Scholar 

  202. Hansen M, Moller P, Sorensen H, Cantwell M (1995) Glucosinolates in broccoli stored under controlled atmosphere. J Am Soc Hortic Sci 120:1069–1074

    CAS  Google Scholar 

  203. Verkerk R, Dekker M, Jongen WM (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958

    Article  CAS  Google Scholar 

  204. Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224. doi:10.1016/j.fct.2006.07.021

    Article  CAS  Google Scholar 

  205. Quinsac A, Charrier A, Ribaillier D, Peron JY (1994) Glucosinolates in etiolated sprouts of sea-kale (Crambe maritima L.). J Sci Food Agric 65:201–207

    Article  CAS  Google Scholar 

  206. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking Brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66:69–81. doi:10.1017/S0029665107005319

    Article  CAS  Google Scholar 

  207. Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323

    Article  CAS  Google Scholar 

  208. Vallejo F, Tomas-Barberan FA, Garcia-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316

    Article  CAS  Google Scholar 

  209. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236. doi:10.1016/j.phrs.2007.01.009

    Article  CAS  Google Scholar 

  210. Agudo A, Ibáñez R, Amiano P et al (2008) Consumption of cruciferous vegetables and glucosinolates in a Spanish adult population. Eur J Clin Nutr 62:324–331

    Article  CAS  Google Scholar 

  211. AICR (2008) Food, nutrition, physical activity, and the prevention of cancer: a Global perspective. American institute for cancer research, Washington, Dc.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Italian Ministry of Agriculture, Food & Forestry (MiPAAF) grants “NUTRIGEA” (DM 30281 23/12/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Possenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Possenti, M., Baima, S., Raffo, A., Durazzo, A., Giusti, A.M., Natella, F. (2017). Glucosinolates in Food. In: Mérillon, JM., Ramawat, K. (eds) Glucosinolates. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25462-3_4

Download citation

Publish with us

Policies and ethics